Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2211-3320
  • E-ISSN: 1874-7647

Abstract

in vivo Catheterizations are usually performed by physicians using X-Ray fluoroscopic guide and contrastmedia. The X-Ray exposure both of the patient and of the operators can induce collateral effects. The present review describes the status of the art on recent patents about magnetic position/orientation indicators capable to drive the probe during in-vivo medical diagnostic or interventional procedures. They are based on the magnetic field produced by sources and revealed by sensors. Possible solutions are: the modulated magnetic field produced by a set of coils positioned externally to the patient is measured by sensors installed on the intra-body probe; the magnetic field produced by a thin permanent magnet installed on the intra-body probe is measured by magnetic field sensors positioned outside the patient body. In either cases, position and orientation of the probe are calculated in real time: this allows the elimination of repetitive X-Ray scans used to monitor the probe. The aim of the proposed systems is to drive the catheter inside the patient vascular tree with a reduction of the X-Ray exposure both of the patient and of the personnel involved in the intervention. The present paper intends also to highlight advantages/disadvantages of the presented solutions.

Loading

Article metrics loading...

/content/journals/biomeng/10.2174/1874764710902010058
2009-01-01
2025-05-18
Loading full text...

Full text loading...

/content/journals/biomeng/10.2174/1874764710902010058
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test