Skip to content
2000
image of A Comprehensive Review on Insect Repellent Agents: Medicinal Plants and Synthetic Compounds

Abstract

Plant-based repellents have been used for generations as personal protection against mosquitoes. Ethnobotanical studies provide valuable knowledge for developing natural products. Commercial repellents with plant-based ingredients are popular, but insufficient studies follow Pesticide Evaluation Scheme WHO guidelines. Further standardized studies are needed to evaluate repellent compounds and develop high-repellency and safe products. Essential Oils (EOs) from aromatic plants have gained popularity as low-risk insecticides due to their low toxicity and short environmental persistence. These plant-derived EOs, produced through steam distillation, have repellent, insecticidal, and growth-reducing effects on various insects. They control phytophagous insects, bite flies, and home and garden insects. US registration is the main hurdle for new EOs. This review explores the use of essential oils from plants as a natural repellent, focusing on their effectiveness and synergistic effects. Essential oils are volatile mixtures of hydrocarbons with diverse functional groups, and their effectiveness is linked to monoterpenes and sesquiterpenes. Synergistic effects can improve their effectiveness, and the use of other natural products, like vanillin, can increase protection time. ., ., and are among the most promising plant families.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230322355240903072704
2024-10-16
2025-02-17
Loading full text...

Full text loading...

References

  1. Conte J.E. Jr A novel approach to preventing insect-borne diseases. N. Engl. J. Med. 1997 337 11 785 786 10.1056/NEJM199709113371112 9287238
    [Google Scholar]
  2. Ghosh A. Chowdhury N. Chandra G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012 135 5 581 598 22771587
    [Google Scholar]
  3. Dayan F.E. Cantrell C.L. Duke S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009 17 12 4022 4034 10.1016/j.bmc.2009.01.046 19216080
    [Google Scholar]
  4. Farzaei M.H. Abbasabadi Z. Ardekani M.R.S. Rahimi R. Farzaei F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013 33 6 815 826 10.1016/S0254‑6272(14)60018‑2 24660617
    [Google Scholar]
  5. Isman M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006 51 1 45 66 10.1146/annurev.ento.51.110104.151146 16332203
    [Google Scholar]
  6. Arlian L.G. Runyan R.A. Sorlie L.B. Estes S.A. Host-seeking behavior of Sarcoptes scabiei. J. Am. Acad. Dermatol. 1984 11 4 594 598 10.1016/S0190‑9622(84)70212‑X 6436342
    [Google Scholar]
  7. Arlian L.G. Vyszenski-Moher D.L. Response of Sarcoptes scabiei var. canis (Acari: Sarcoptidae) to lipids of mammalian skin. J. Med. Entomol. 1995 32 1 34 41 10.1093/jmedent/32.1.34 7869340
    [Google Scholar]
  8. Das N.G. Baruah I. Talukdar P.K. Das S.C. Evaluation of botanicals as repellents against mosquitoes. J. Vector Borne Dis. 2003 40 1-2 49 53 15119071
    [Google Scholar]
  9. Kilonzo B.S. Ngomuo A.J. Sabuni C.A. Mgode G.F. Effects of Azadirachta indica (Neem) extract on livestock fleas in Morogoro district, Tanzania. Int. J. Trop. Insect Sci. 2001 21 1 89 92 10.1017/S1742758400020099
    [Google Scholar]
  10. Okumu F.O. Knols B.G.J. Fillinger U. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar. J. 2007 6 1 63 10.1186/1475‑2875‑6‑63 17519000
    [Google Scholar]
  11. McCABE E.T. Barthel W.F. Gertler S.I. Hall S.A. Insect Repellents. Iii. N, N-Diethylamides1. J. Org. Chem. 1954 19 4 493 498 10.1021/jo01369a003
    [Google Scholar]
  12. Corbel V. Stankiewicz M. Pennetier C. Fournier D. Stojan J. Girard E. Dimitrov M. Molgó J. Hougard J.M. Lapied B. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol. 2009 7 1 47 10.1186/1741‑7007‑7‑47 19656357
    [Google Scholar]
  13. Xia Y. Wang G. Buscariollo D. Pitts R.J. Wenger H. Zwiebel L.J. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc. Natl. Acad. Sci. USA 2008 105 17 6433 6438 10.1073/pnas.0801007105 18427108
    [Google Scholar]
  14. Ditzen M. Pellegrino M. Vosshall L.B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 2008 319 5871 1838 1842 10.1126/science.1153121 18339904
    [Google Scholar]
  15. Syed Z. Leal W.S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. USA 2008 105 36 13598 13603 10.1073/pnas.0805312105 18711137
    [Google Scholar]
  16. Boeckh J. Breer H. Geier M. Hoever F.P. Krüger B.W. Nentwig G. Sass H. Acylated 1, 3-aminopropanols as repellents against bloodsucking arthropods. Pestic. Sci. 1996 48 4 359 373 10.1002/(SICI)1096‑9063(199612)48:4<359::AID‑PS490>3.0.CO;2‑Z
    [Google Scholar]
  17. Sanghong R. Junkum A. Chaithong U. Jitpakdi A. Riyong D. Tuetun B. Champakaew D. Intirach J. Muangmoon R. Chansang A. Pitasawat B. Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae). Malar. J. 2015 14 1 307 10.1186/s12936‑015‑0816‑y 26249666
    [Google Scholar]
  18. Govindarajan M. Rajeswary M. Arivoli S. Tennyson S. Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol. Res. 2016 115 5 1807 1816 10.1007/s00436‑016‑4920‑x 26792432
    [Google Scholar]
  19. Nathan S.S. Kalaivani K. Murugan K. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 2005 96 1 47 55 10.1016/j.actatropica.2005.07.002 16112073
    [Google Scholar]
  20. Snow R.W. Guerra C.A. Noor A.M. Myint H.Y. Hay S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005 434 7030 214 217 10.1038/nature03342 15759000
    [Google Scholar]
  21. Brooke B.D. Hunt R.H. Koekemoer L.L. Dossou-Yovo J. Coetzee M. Evaluation of a polymerase chain reaction assay for detection of pyrethroid insecticide resistance in the malaria vector species of the Anopheles gambiae complex. J. Am. Mosq. Control Assoc. 1999 15 4 565 568 10612620
    [Google Scholar]
  22. Lengeler C. Smith T.A. Armstrong Schellenberg J. Focus on the effect of bednets on malaria morbidity and mortality. Parasitol. Today 1997 13 3 123 124 10.1016/S0169‑4758(97)84870‑3 15275117
    [Google Scholar]
  23. Beier J.C. Killeen G.F. Githure J.I. Short report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 1999 61 1 109 113 10.4269/ajtmh.1999.61.109 10432066
    [Google Scholar]
  24. Casimiro S. Coleman M. Mohloai P. Hemingway J. Sharp B. Insecticide resistance in Anopheles funestus (Diptera: Culicidae) from Mozambique. J. Med. Entomol. 2006 43 2 267 275 10.1093/jmedent/43.2.267 16619610
    [Google Scholar]
  25. World Health Organization World Malaria Report. 2012 Available From: www.who.int/ malaria/publications/world_malaria_report_2012/en/
  26. Pichersky E. Gershenzon J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002 5 3 237 243 10.1016/S1369‑5266(02)00251‑0 11960742
    [Google Scholar]
  27. Harrewijn P. Minks A.K. Mollema C. Evolution of plant volatile production in insect-plant relationships. Chemoecology 1994 5-6 2 55 73 10.1007/BF01259434
    [Google Scholar]
  28. Moore SJ Lenglet A Hill N Plant-based insect repellents. Insect Repellents Milton Park, Abingdon Routledge 2006 10.1201/9781420006650.ch14
    [Google Scholar]
  29. Ntonifor N.N. Ngufor C.A. Kimbi H.K. Oben B.O. Traditional use of indigenous mosquito-repellents to protect humans against mosquitoes and other insect bites in a rural community of Cameroon. East Afr. Med. J. 2006 83 10 553 558 17310681
    [Google Scholar]
  30. Casas A. Valiente-Banuet A. Viveros J.L. Caballero J. Cortés L. Dávila P. Lira R. Rodríguez I. Plant resources of the Tehuacán-Cuicatlán valley, Mexico. Econ. Bot. 2001 55 1 129 166 10.1007/BF02864551
    [Google Scholar]
  31. Curtis CF Appropriate technology in vector control. Boca Raton CRC Press 2018 10.1201/9781351069823
    [Google Scholar]
  32. Belayneh A. Bussa N.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J. Ethnobiol. Ethnomed. 2014 10 1 18 10.1186/1746‑4269‑10‑18 24499509
    [Google Scholar]
  33. Belayneh A. Asfaw Z. Demissew S. Bussa N.F. Medicinal plants potential and use by pastoral and agro-pastoral communities in Erer Valley of Babile Wereda, Eastern Ethiopia. J. Ethnobiol. Ethnomed. 2012 8 1 42 10.1186/1746‑4269‑8‑42 23082858
    [Google Scholar]
  34. Kenea O. Tekie H. Ethnobotanical survey of plants traditionally used for malaria prevention and treatment in selected resettlement and indigenous villages in Sasiga District, Western Ethiopia. J. Biol. Agric. Healthc. 2015 5 11
    [Google Scholar]
  35. Meragiaw M. Asfaw Z. Review of antimalarial, pesticidal and repellent plants in the Ethiopian traditional herbal medicine. Research & Reviews. Journal of Herbal Science. 2014 3 3 21 45
    [Google Scholar]
  36. Karunamoorthi K. Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: An ethnobotanical survey. J. Ethnobiol. Ethnomed. 2014 10 1 22 10.1186/1746‑4269‑10‑22 24521138
    [Google Scholar]
  37. Berhan A. Asfaw Z. Kelbessa E. Ethnobotany of plants used as insecticides, repellents and antimalarial agents in Jabitehnan district, West Gojjam. Sinet Ethiop. J. Sci. 2006 29 1 87 92 10.4314/sinet.v29i1.18263
    [Google Scholar]
  38. Gall A Shenkute Z. Ethiopian traditional medications and their interactions with conventional drugs. 2009 Available From: https://ethnomed.org/resource/ethiopian-traditional-and-herbal-medications-and-their-interactions-with-conventional-drugs/#
  39. Bekele D. Asfaw Z. Petros B. Tekie H. Ethnobotanical study of plants used for protection against insect bite and for the treatment of livestock health problems in rural areas of Akaki District, Eastern Shewa, Ethiopia. Topclass J Herbal Med. 2012 1 2 12 24
    [Google Scholar]
  40. Kidane D. Tomass Z. Dejene T. Community knowledge of traditional mosquito repellent plants in Kolla Temben District, Tigray, Northern Ethiopia. Sci. Res. Essays 2013 8 24 1139 1144
    [Google Scholar]
  41. Karunamoorthi K. Ilango K. Endale A. Ethnobotanical survey of knowledge and usage custom of traditional insect/mosquito repellent plants among the Ethiopian Oromo ethnic group. J. Ethnopharmacol. 2009 125 2 224 229 10.1016/j.jep.2009.07.008 19607902
    [Google Scholar]
  42. Meragiaw M. Wild useful plants with emphasis on traditional use of medicinal and edible plants by the people of Aba’ala, North-eastern Ethiopia. J Med Plant Herb Ther Res. 2016 4 1 1 6
    [Google Scholar]
  43. Debella A. Taye A. Abebe D. Mudi K. Melaku D. Taye G. Screening of some Ethiopian medicinal plants for mosquito larvicidal effects and phytochemical constituents. Pharmacol Online. 2007 3 231 243
    [Google Scholar]
  44. Weissenberg M. Levy A. Svoboda J.A. Ishaaya I. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 1998 47 2 203 209 10.1016/S0031‑9422(97)00565‑7 9431673
    [Google Scholar]
  45. Büyükgüzel E. Büyükgüzel K. Snela M. Erdem M. Radtke K. Ziemnicki K. Adamski Z. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biol. Toxicol. 2013 29 2 117 129 10.1007/s10565‑013‑9240‑7 23475114
    [Google Scholar]
  46. Büyükgüzel E. Büyükgüzel K. Erdem M. Adamski Z. Adamski Z. Marciniak P. Ziemnicki K. Ventrella E. Scrano L. Bufo S.A. THE INFLUENCE OF DIETARY α‐SOLANINE ON THE WAXMOTH Galleria mellonella L. Arch. Insect Biochem. Physiol. 2013 83 1 15 24 10.1002/arch.21089 23494897
    [Google Scholar]
  47. Friedman M. Tomato glycoalkaloids: Role in the plant and in the diet. J. Agric. Food Chem. 2002 50 21 5751 5780 10.1021/jf020560c 12358437
    [Google Scholar]
  48. Nenaah G.E. Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae). J. Stored Prod. Res. 2011 47 3 185 190 10.1016/j.jspr.2010.11.003
    [Google Scholar]
  49. Sanchez Chopa C. Benzi V. Alzogaray R. Ferrero A.A. Repellent activity of hexanic and ethanolic extracts from fruits of Solanum eleagnifolium (Solanaceae) against Blattella germanica (Insecta, Dictyoptera, Blattellidae) adults. Bol. Latinoam. Caribe Plantas Med. Aromat. 2009 8 3 172 175
    [Google Scholar]
  50. Dinesh D. Kumari S. Kumar V. Das P. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae): A review. J. Vector Borne Dis. 2014 51 1 1 7 10.4103/0972‑9062.130139 24717195
    [Google Scholar]
  51. Boulogne I. Petit P. Ozier-Lafontaine H. Desfontaines L. Loranger-Merciris G. Insecticidal and antifungal chemicals produced by plants: A review. Environ. Chem. Lett. 2012 10 4 325 347 10.1007/s10311‑012‑0359‑1
    [Google Scholar]
  52. Jerzykiewicz J. [Alkaloids of Solanaceae (nightshade plants)]. Postepy Biochem. 2007 53 3 280 286 18399356
    [Google Scholar]
  53. Hassine T.B. Mansour A.B. Hammami S. Case report of fatal poisoning by Nicotina tabacum in Cattle in Tunisia. Rev. Med. Vet. (Toulouse) 2013 164 141 144
    [Google Scholar]
  54. Indhumathi T. Mohandass S. Shibi A. Acute toxicity study of ethanolic extract of Solanum incanum L. fruit. Asian J. Pharm. Clin. Res. 2014 7 98 100
    [Google Scholar]
  55. Diaz G. Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins (Basel) 2015 7 12 5408 5416 10.3390/toxins7124892 26690479
    [Google Scholar]
  56. Lachman J Hamouz K Orsák M Pivec V Potato glycoalkaloids and their significance in plant protection and human nutrition-review. Rostlinna Vyroba 2001 47 4 181 191
    [Google Scholar]
  57. Berthold-Pluta A. Stasiak-Różańska L. Pluta A. Garbowska M. Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. Eur. Food Res. Technol. 2019 245 5 1137 1147 10.1007/s00217‑018‑3218‑x
    [Google Scholar]
  58. Osman Mohamed Ali E. Shakil N.A. Rana V.S. Sarkar D.J. Majumder S. Kaushik P. Singh B.B. Kumar J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod. 2017 108 379 387 10.1016/j.indcrop.2017.06.061
    [Google Scholar]
  59. Ruiz-Navajas Y. Viuda-Martos M. Sendra E. Perez-Alvarez J.A. Fernández-López J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 2013 30 2 386 392 10.1016/j.foodcont.2012.07.052
    [Google Scholar]
  60. Wang C. Wang L. Li C. Hu C. Zhao S. Anti-proliferation activities of three bioactive components purified by high-speed counter-current chromatography in essential oil from ginger. Eur. Food Res. Technol. 2020 246 4 795 805 10.1007/s00217‑020‑03446‑7
    [Google Scholar]
  61. Kindl M. Bucar F. Jelić D. Brajša K. Blažeković B. Vladimir-Knežević S. Comparative study of polyphenolic composition and anti-inflammatory activity of Thymus species. Eur. Food Res. Technol. 2019 245 9 1951 1962 10.1007/s00217‑019‑03297‑x
    [Google Scholar]
  62. Miyakado M. Nakayama I. Yoshioka H. Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L. Agric. Biol. Chem. 1980 44 7 1701 1703 10.1080/00021369.1980.10864200
    [Google Scholar]
  63. Scott I.M. Puniani E. Durst T. Phelps D. Merali S. Assabgui R.A. Sánchez-Vindas P. Poveda L. Philogène B.J.R. Arnason J.T. Insecticidal activity of Piper tuberculatum Jacq. extracts: Synergistic interaction of piperamides. Agric. For. Entomol. 2002 4 2 137 144 10.1046/j.1461‑9563.2002.00137.x
    [Google Scholar]
  64. Feng R. Isman M.B. Selection for resistance to azadirachtin in the green peach aphid,Myzus persicae. Experientia 1995 51 8 831 833 10.1007/BF01922438
    [Google Scholar]
  65. Belzile A.S. Majerus S.L. Podeszfinski C. Guillet G. Durst T. Arnason J.T. Dillapiol derivatives as synergists: Structure–activity relationship analysis. Pestic. Biochem. Physiol. 2000 66 1 33 40 10.1006/pest.1999.2453
    [Google Scholar]
  66. Usha Rani P. Jyothsna Y. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol. Plant. 2010 32 4 695 701 10.1007/s11738‑009‑0449‑2
    [Google Scholar]
  67. Sambangi P. Rani P.U. Physiological effects of resveratrol and coumaric acid on two major groundnut pests and their egg parasitoidbehavior. Arch. Insect Biochem. Physiol. 2016 91 4 230 245 10.1002/arch.21320 26890503
    [Google Scholar]
  68. Sambangi P. Usha Rani P. Induction of phenolic acids and metals in Arachis hypogaea L. plants due to feeding of three lepidopteran pests. Arthropod-Plant Interact. 2013 7 5 517 525 10.1007/s11829‑013‑9263‑2
    [Google Scholar]
  69. Dixon R.A. Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995 7 7 1085 1097 10.2307/3870059 12242399
    [Google Scholar]
  70. Beran F. Köllner T.G. Gershenzon J. Tholl D. Chemical convergence between plants and insects: Biosynthetic origins and functions of common secondary metabolites. New Phytol. 2019 223 1 52 67 10.1111/nph.15718 30707438
    [Google Scholar]
  71. Cheong S.P.S. Huang J. Bendena W.G. Tobe S.S. Hui J.H.L. Evolution of ecdysis and metamorphosis in arthropods: The rise of regulation of juvenile hormone. Integr. Comp. Biol. 2015 55 5 878 890 10.1093/icb/icv066 26105594
    [Google Scholar]
  72. Qu Z. Bendena W.G. Tobe S.S. Hui J.H.L. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J. Steroid Biochem. Mol. Biol. 2018 184 69 76 10.1016/j.jsbmb.2018.01.013 29355708
    [Google Scholar]
  73. Yu F. Utsumi R. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell. Mol. Life Sci. 2009 66 18 3043 3052 10.1007/s00018‑009‑0066‑7 19547916
    [Google Scholar]
  74. Degenhardt J. Köllner T.G. Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009 70 15-16 1621 1637 10.1016/j.phytochem.2009.07.030 19793600
    [Google Scholar]
  75. Tsang S.S.K. Law S.T.S. Li C. Qu Z. Bendena W.G. Tobe S.S. Hui J.H.L. Diversity of insect sesquiterpenoid regulation. Front. Genet. 2020 11 1027 10.3389/fgene.2020.01027 33133135
    [Google Scholar]
  76. Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925 18 2 265 267 10.1093/jee/18.2.265a
    [Google Scholar]
  77. Broza M. Seasonal changes in population of Heliothis armigera (Hb.) (Lepidoptera; Noctuidae) in cotton fields in Israel and its control with a Bacillus thuringiensis preparation. J. Appl. Entomol. 1986 102 1-5 363 370 10.1111/j.1439‑0418.1986.tb00934.x
    [Google Scholar]
  78. Ibrahim MA Kainulainen P Aflatuni A Tiilikkala K Holopainen JK Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agr. Food Sci. Finland 2008 10 243 259 10.23986/afsci.5697
    [Google Scholar]
  79. Sara SB Folorunso OA Potentials of utilizing neem tree for desertification control in Nigeria. Sustain. Indus. Utiliz. Neem Tree 2002 2002 45 51
    [Google Scholar]
  80. Debjit B. Jitender Y. Tripathi K.K. Kumar K.S. Herbal remedies of Azadirachta indica and its medicinal application. J. Chem. Pharm. Res. 2010 2 1 62 72
    [Google Scholar]
  81. Ansari M.A. Razdan R.K. Operational feasibility of malaria control by burning neem oil in kerosene lamp in Beel Akbarpur village, District Ghaziabad, India. Indian J. Malariol. 1996 33 2 81 87 8952172
    [Google Scholar]
  82. Biswas K. Chattopadhyay I. Banerjee R.K. Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci. 2002 2002 1336 1345
    [Google Scholar]
  83. Nicoletti M. Murugan K. Canale A. Benelli G. Neem-borne molecules as eco-friendly control tools against mosquito vectors of economic importance. Curr. Org. Chem. 2016 20 25 2681 2689 10.2174/1385272820666160218233923
    [Google Scholar]
  84. Dua V.K. Pandey A.C. Raghavendra K. Gupta A. Sharma T. Dash A.P. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar. J. 2009 8 1 124 10.1186/1475‑2875‑8‑124 19500429
    [Google Scholar]
  85. Anjali C.H. Sharma Y. Mukherjee A. Chandrasekaran N. Neem oil ( Azadirachta indica ) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 2012 68 2 158 163 10.1002/ps.2233 21726037
    [Google Scholar]
  86. Trongtokit Y. Rongsriyam Y. Komalamisra N. Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 2005 19 4 303 309 10.1002/ptr.1637 16041723
    [Google Scholar]
  87. Koul O. Effect of neem extracts and azadirachtin on fertility and fecundity of cabbage aphid, Brevicorynebrassicae (L.). Pestic. Res. J. 1998 10 2 258 261
    [Google Scholar]
  88. Macchioni F. Sfingi M. Chiavacci D. Cecchi F. Larvicidal and pupicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes Aedes albopictus (Skuse, 1894)(Diptera: Culicidae). Acta Zool. Bulg. 2020 72 3 479 485
    [Google Scholar]
  89. Lis-Balchin M. Lavender: The genus Lavandula. Boca Raton, Florida CRC press 2002 10.1201/9780203216521
    [Google Scholar]
  90. Cosimi S. Rossi E. Cioni P.L. Canale A. Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J. Stored Prod. Res. 2009 45 2 125 132 10.1016/j.jspr.2008.10.002
    [Google Scholar]
  91. Papachristos D.P. Karamanoli K.I. Stamopoulos D.C. Menkissoglu-Spiroudi U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci. 2004 60 5 514 520 10.1002/ps.798 15154521
    [Google Scholar]
  92. van Tol R.W. Swarts H.J. van der Linden A. Visser J.H. Repellence of the red bud borer Resseliellaoculiperda from grafted apple trees by impregnation of rubber budding strips with essential oils. Pest Management Science: Formerly. Pestic. Sci. 2007 63 5 483 490 10.1002/ps.1374 17421054
    [Google Scholar]
  93. Rozman V. Kalinovic I. Korunic Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 2007 43 4 349 355 10.1016/j.jspr.2006.09.001
    [Google Scholar]
  94. Cappello G. Spezzaferro M. Grossi L. Manzoli L. Marzio L. Peppermint oil (Mintoil®) in the treatment of irritable bowel syndrome: A prospective double blind placebo-controlled randomized trial. Dig. Liver Dis. 2007 39 6 530 536 10.1016/j.dld.2007.02.006 17420159
    [Google Scholar]
  95. Robert I.K. Handbook of pesticide toxicology. New York Academic Press 2001 823
    [Google Scholar]
  96. Ansari M.A. Vasudevan P. Tandon M. Razdan R.K. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresour. Technol. 2000 71 3 267 271 10.1016/S0960‑8524(99)00079‑6
    [Google Scholar]
  97. Lee S.E. Lee B.H. Choi W.S. Park B.S. Kim J.G. Campbell B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001 57 6 548 553 10.1002/ps.322 11407032
    [Google Scholar]
  98. Kumar A Dutta GP Indigenous plant oils as larvicidal agent against Anopheles stephensi mosquitoes. Curr. Sci. 1987 56 18 959 960
    [Google Scholar]
  99. Cortés-Rojas D.F. de Souza C.R.F. Oliveira W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014 4 2 90 96 10.1016/S2221‑1691(14)60215‑X 25182278
    [Google Scholar]
  100. Batiha G.E.S. Beshbishy A.M. Tayebwa D.S. Shaheen H.M. Yokoyama N. Igarashi I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick Borne Dis. 2019 10 5 949 958 10.1016/j.ttbdis.2019.04.016 31101552
    [Google Scholar]
  101. Chomchalow N. Spice production in Asia—An overview. Proceedings of the Conference IBC’s Asia Spice Markets 96 Conference 27-28 May 1996 Singapore 1996
    [Google Scholar]
  102. Silva J. Abebe W. Sousa S.M. Duarte V.G. Machado M.I.L. Matos F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003 89 2-3 277 283 10.1016/j.jep.2003.09.007 14611892
    [Google Scholar]
  103. Cai L. Wu C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod. 1996 59 10 987 990 10.1021/np960451q 8904847
    [Google Scholar]
  104. El Hag E.A. El Nadi A.H. Zaitoon A.A. Toxic and growth retarding effects of three plant extracts on Culex pipiens larvae (Diptera: Culicidae). Phytother. Res. 1999 13 5 388 392 10.1002/(SICI)1099‑1573(199908/09)13:5<388::AID‑PTR455>3.0.CO;2‑U 10441777
    [Google Scholar]
  105. Yang Y.C. Lee S.H. Lee W.J. Choi D.H. Ahn Y.J. Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis. J. Agric. Food Chem. 2003 51 17 4884 4888 10.1021/jf034225f 12903940
    [Google Scholar]
  106. Ho S.H. Cheng L.P.L. Sim K.Y. Tan H.T.W. Potential of cloves (Syzygium aromaticum (L.) Merr. and Perry as a grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol. Technol. 1994 4 1-2 179 183 10.1016/0925‑5214(94)90019‑1
    [Google Scholar]
  107. Maia M.F. Moore S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011 10 S1 Suppl. 1 S11 10.1186/1475‑2875‑10‑S1‑S11 21411012
    [Google Scholar]
  108. Lankage J. Cinnamon, tree that gave the name to the country and changed the course of history. J. Organ. Prof. Assoc. Sri Lanka. 2013 28 40 48
    [Google Scholar]
  109. Shu Z. Xiwen L. Jie L. Van der Werff H. CINNAMOMUM Schaeffer, Bot. Exped. 74. 1760, nom. cons. Flora. China 2008 7 166 187
    [Google Scholar]
  110. Singh G. Maurya S. deLampasona M.P. Catalan C.A.N. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem. Toxicol. 2007 45 9 1650 1661 10.1016/j.fct.2007.02.031 17408833
    [Google Scholar]
  111. Dai D.N. Chung N.T. Huong L.T. Hung N.H. Chau D.T.M. Yen N.T. Setzer W.N. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum growing wild in north central Vietnam. Molecules 2020 25 6 1303 10.3390/molecules25061303 32178471
    [Google Scholar]
  112. Hariri M Ghiasvand R Cinnamon and chronic diseases. Drug Discovery from Mother Nature Berlin, Heidelberg Springer Link 2016 10.1007/978‑3‑319‑41342‑6_1
    [Google Scholar]
  113. Nollet L.M. Rathore H.S. Green pesticides handbook: Essential oils for pest control. Boca Raton, Florida CRC Press 2017 10.1201/9781315153131
    [Google Scholar]
  114. Schultz G. Simbro E. Belden J. Zhu J. Coats J. Catnip, Nepeta cataria (Lamiales: Lamiaceae)—A closer look: Seasonal occurrence of nepetalactone isomers and comparative repellency of three terpenoids to insects. Environ. Entomol. 2004 33 6 1562 1569 10.1603/0046‑225X‑33.6.1562
    [Google Scholar]
  115. Bernier U.R. Furman K.D. Kline D.L. Allan S.A. Barnard D.R. Comparison of contact and spatial repellency of catnip oil and N,N-diethyl-3-methylbenzamide (deet) against mosquitoes. J. Med. Entomol. 2005 42 3 306 311 15962779
    [Google Scholar]
  116. Peterson C.J. Coats J.R. Catnip essential oil and its nepetalactone isomers as repellents for mosquitoes. InRecent developments in invertebrate repellents. Washington, D.C. American Chemical Society 2011 59 65
    [Google Scholar]
  117. Waller G.R. Price G.H. Mitchell E.D. Feline attractant, cis,trans-nepetalactone: Metabolism in the domestic cat. Science 1969 164 3885 1281 1282 10.1126/science.164.3885.1281 5770619
    [Google Scholar]
  118. Klun J.A. Schmidt W.F. Debboun M. Stereochemical effects in an insect repellent. J. Med. Entomol. 2001 38 6 809 812 10.1603/0022‑2585‑38.6.809 11761378
    [Google Scholar]
  119. Laska M. Galizia C.G. Enantioselectivity of odor perception in honeybees (Apis mellifera carnica). Behav. Neurosci. 2001 115 3 632 639 10.1037/0735‑7044.115.3.632 11439452
    [Google Scholar]
  120. Birkett M.A. Hassanali A. Hoglund S. Pettersson J. Pickett J.A. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 2011 72 1 109 114 10.1016/j.phytochem.2010.09.016 21056438
    [Google Scholar]
  121. World Health Organization Evaluation and testing of insecticides. Report of the WHO Informal Consultation, 7−11 October 1996, WHO/HQ, Geneva. 1996 Available From: https://www.who.int/publications/i/item/ctd-whopes-ic-96.1
  122. Zhu J.J. Zeng X.P. Berkebile D. Du H.J. Tong Y. Qian K. Efficacy and safety of catnip ( Nepeta cataria ) as a novel filth fly repellent *. Med. Vet. Entomol. 2009 23 3 209 216 10.1111/j.1365‑2915.2009.00809.x 19712151
    [Google Scholar]
  123. Shabnum S. Wagay M.G. Essential oil composition of Thymus vulgaris L. and their uses. J. Res. Dev. (Srinagar) 2011 11 83 94
    [Google Scholar]
  124. Sakkas H Papadopoulou C Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol. 2017 27 3 429 438 10.4014/jmb.1608.08024
    [Google Scholar]
  125. Borugă O Jianu C Mişcă C Goleţ I Gruia AT Horhat FG Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. JJ Med Life. 2014 7 Spec Iss 3 56 60
    [Google Scholar]
  126. Wu L. Huo X. Zhou X. Zhao D. He W. Liu S. Liu H. Feng T. Wang C. Acaricidal activity and synergistic effect of thyme oil constituents against carmine spider mite (TetranychusCinnabarinus (Boisduval)). Molecules 2017 22 11 1873 10.3390/molecules22111873 29104267
    [Google Scholar]
  127. Martins I.M. Rodrigues S.N. Barreiro F. Rodrigues A.E. Microencapsulation of thyme oil by coacervation. J. Microencapsul. 2009 26 8 667 675 10.3109/02652040802646599 19888875
    [Google Scholar]
  128. Simonazzi A Cid AG Villegas M Romero AI Palma SD Bermúdez JM Nanotechnology applications in drug controlled release. Drug targeting and stimuli sensitive drug delivery systems. New York, United States William Andrew Publishing 2018 10.1016/B978‑0‑12‑813689‑8.00003‑3
    [Google Scholar]
  129. Parisi OI Puoci F Restuccia D Farina G Iemma F Picci N Polyphenols and their formulations: Different strategies to overcome the drawbacks associated with their poor stability and bioavailability. Polyphenols in human health and disease Cambridge, Massachusetts Academic Press 2014 29
    [Google Scholar]
  130. Kala S. Sogan N. Naik S.N. Agarwal A. Kumar J. Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances. Sci. Rep. 2020 10 1 14107 10.1038/s41598‑020‑70889‑z 32839484
    [Google Scholar]
  131. Makri O. Kintzios S. Ocimum sp.(basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008 13 3 123 150 10.1300/J044v13n03_10
    [Google Scholar]
  132. Avetisyan A. Markosian A. Petrosyan M. Sahakyan N. Babayan A. Aloyan S. Trchounian A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017 17 1 60 10.1186/s12906‑017‑1587‑5 28103929
    [Google Scholar]
  133. Jirovetz L. Buchbauer G. Shafi M.P. Kaniampady M.M. Chemotaxonomical analysis of the essential oil aroma compounds of four different Ocimum species from southern India. Eur. Food Res. Technol. 2003 217 2 120 124 10.1007/s00217‑003‑0708‑1
    [Google Scholar]
  134. Shahrajabian M.H. Sun W. Cheng Q. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): A review. Int. J. Food Prop. 2020 23 1 1961 1970 10.1080/10942912.2020.1828456
    [Google Scholar]
  135. Bączek K. Kosakowska O. Gniewosz M. Gientka I. Węglarz Z. Sweet basil (Ocimumbasilicum L.) productivity and raw material quality from organic cultivation. Agronomy (Basel) 2019 9 6 279
    [Google Scholar]
  136. Abo-El Seoud M.A. Sarhan M.M. Omar A.E. Helal M.M. Biocides formulation of essential oils having antimicrobial activity. Arch. Phytopathol. Pflanzenschutz 2005 38 3 175 184
    [Google Scholar]
  137. de la Parte E.M. Pérez-Vicente L. Bernal B. Garcia D. First report of Peronospora sp. on sweet basil (Ocimumbasilicum) in Cuba. Plant Pathol. 2010 59 800
    [Google Scholar]
  138. Stephens C. Masamu E.T. Kiama M.G. Keto A.J. Kinenekejo M. Ichimori K. Lines J. Knowledge of mosquitos in relation to public and domestic control activities in the cities of Dar es Salaam and Tanga. Bull. World Health Organ. 1995 73 1 97 104 7704932
    [Google Scholar]
  139. White G.B. The insect-repellant value of Ocimum SPP. (Labiatae): Traditional anti-mosquito plants. East Afr. Med. J. 1973 50 5 248 252 4147815
    [Google Scholar]
  140. Elgayyar M. Draughon F.A. Golden D.A. Mount J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001 64 7 1019 1024 10.4315/0362‑028X‑64.7.1019 11456186
    [Google Scholar]
  141. Suppakul P. Miltz J. Sonneveld K. Bigger S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2003 51 11 3197 3207 12744643
    [Google Scholar]
  142. Coker H.A. Chukwuani C.M. Ifudu N.D. Aina B.A. The malaria scourge. Concepts in disease management. Nigerian. J. Pharm. (Cairo) 2001 32 19 47
    [Google Scholar]
  143. Golob P Nishimura H Satoh A. Eucalyptus in insect and plant pest control. Eucalyptus Boca Raton, Florida CRC Press 2002
    [Google Scholar]
  144. Curtis C.F. Control of disease vectors in the community. Prescott, Arizona Wolfe Publishing Ltd. 1991
    [Google Scholar]
  145. Li Z. Yang J. Zhuang X. Zhang Z. Studies on the repellent quwenling. Malaria Res. 1974 1974 6
    [Google Scholar]
  146. Katz T.M. Miller J.H. Hebert A.A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol. 2008 58 5 865 871 10.1016/j.jaad.2007.10.005 18272250
    [Google Scholar]
  147. Dorman H.J.D. Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000 88 2 308 316 10.1046/j.1365‑2672.2000.00969.x 10736000
    [Google Scholar]
  148. Isman M.B. Machial C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. Naturally Occurring Bioactive Compounds. Advances in Phytomedicine. Rai M. Carpinella M.C. New York, USA Elsevier 2006 29 44
    [Google Scholar]
  149. Bakkali F. Averbeck S. Averbeck D. Idaomar M. Biological effects of essential oils – A review. Food Chem. Toxicol. 2008 46 2 446 475 10.1016/j.fct.2007.09.106 17996351
    [Google Scholar]
  150. Nerio L.S. Olivero-Verbel J. Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010 101 1 372 378 19729299
    [Google Scholar]
  151. Isman M.B. Plant essential oils for pest and disease management. Crop protection. 2000 Sep 12;19(8-10):603-8. Kordali S, Aslan I, Çalmaşur O, Cakir A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae). Ind. Crops Prod. 2006 23 2 162 170
    [Google Scholar]
  152. Kordali S. Aslan I. Çalmaşur O. Cakir A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae). Ind. Crops Prod. 2006 23 2 162 170
    [Google Scholar]
  153. Brooker M.I.H. Kleinig D.A. Field Guide to Eucalyptus. South-eastern, Australia. 3rd ed Melbourne Bloomings 2006
    [Google Scholar]
  154. Zobel B. Eucalyptus in the forest industry. Tappi J. (USA) 1988
    [Google Scholar]
  155. Batish D.R. Singh H.P. Kohli R.K. Kaur S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manage. 2008 256 12 2166 2174 10.1016/j.foreco.2008.08.008
    [Google Scholar]
  156. Duke J.A. USDA-ARS Germplasm Resources Information Network (GRIN). 2004 Available From: http://www.ars-grin.gov/duke/
  157. Moore SJ Debboun M History of insect repellents. Insect repellents: Principles, methods and uses. Boca Raton, Florida CRC Press 2007
    [Google Scholar]
  158. Islam J. Zaman K. Duarah S. Raju P.S. Chattopadhyay P. Mosquito repellents: An insight into the chronological perspectives and novel discoveries. Acta Trop. 2017 167 216 230 28040483
    [Google Scholar]
  159. Norris E.J. Coats J.R. Current and future repellent technologies: The potential of spatial repellents and their place in mosquito-borne disease control. Int. J. Environ. Res. Public Health 2017 14 2 124 28146066
    [Google Scholar]
  160. Lupi E. Hatz C. Schlagenhauf P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review. Travel Med. Infect. Dis. 2013 11 6 374 411 24201040
    [Google Scholar]
  161. Leal W.S. The enigmatic reception of DEET - the gold standard of insect repellents. Curr. Opin. Insect Sci. 2014 6 93 98 25530943
    [Google Scholar]
  162. Deletre E. Schatz B. Bourguet D. Chandre F. Williams L. Ratnadass A. Martin T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology 2016 26 127 142
    [Google Scholar]
  163. Khater HF Bioactivity of essential oils as green biopesticides: Recent global scenario. Recent Progress in Medicinal Plants. Studium Press LLC, USA 2013
    [Google Scholar]
  164. Khater H.F. Prospects of botanical biopesticides in insect pest management. Pharmacologia. 2012 3 12 641 656
    [Google Scholar]
  165. Khater HF Ecosmart biorational insecticides: Alternative insect control strategies. Insecticides - Advances in Integrated Pest Management London InTechOpen 2012
    [Google Scholar]
  166. Boeckh J. Breer H. Geier M. Hoever F.P. Krüger B.W. Nentwig G. Sass H. Acylated 1, 3‐aminopropanols as repellents against bloodsucking arthropods. Pestic. Sci. 1996 48 4 359 373 10.1002/(SICI)1096‑9063(199612)48:4<359::AID‑PS490>3.0.CO;2‑Z
    [Google Scholar]
  167. Pages F. Dautel H. Duvallet G. Kahl O. de Gentile L. Boulanger N. Tick repellents for human use: Prevention of tick bites and tick-borne diseases. Vector Borne Zoonotic Dis. 2014 14 2 85 93 24410143
    [Google Scholar]
  168. Frances S.P. Waterson D.G. Beebe N.W. Cooper R.D. Field evaluation of repellent formulations containing deet and picaridin against mosquitoes in Northern Territory, Australia. J. Med. Entomol. 2004 41 3 414 417 15185943
    [Google Scholar]
  169. Costantini C. Badolo A. Ilboudo-Sanogo E. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 2004 98 11 644 652 15363644
    [Google Scholar]
  170. Frances S.P. Waterson D.G. Beebe N.W. Cooper R.D. Field evaluation of commercial repellent formulations against mosquitoes (Diptera: Culicidae) in Northern Territory, Australia. J. Am. Mosq. Control Assoc. 2005 21 4 480 482 16506580
    [Google Scholar]
  171. Goodyer L. Schofield S. Mosquito repellents for the traveller: Does picaridin provide longer protection than DEET? J. Travel Med. 2018 25 Suppl. 1 S10 S15 29718433
    [Google Scholar]
  172. Bissinger B.W. Roe R.M. Tick repellents: Past, present, and future. Pestic. Biochem. Physiol. 2010 96 2 63 79
    [Google Scholar]
  173. Nasci RS Wirtz RA Brogdon WG Protection against mosquitoes, ticks, and other arthropods. CDC Health Inform. Int. Travel 2016 2016 94
    [Google Scholar]
  174. Carroll S.P. Prolonged efficacy of IR3535 repellents against mosquitoes and blacklegged ticks in North America. J. Med. Entomol. 2008 45 4 706 714 18714871
    [Google Scholar]
  175. Stanczyk N.M. Brookfield J.F. Ignell R. Logan J.G. Field L.M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc. Natl. Acad. Sci. USA 2010 107 19 8575 8580 20439757
    [Google Scholar]
  176. Klun J.A. Strickman D. Rowton E. Williams J. Kramer M. Roberts D. Debboun M. Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (Deet) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays. J. Med. Entomol. 2004 41 3 418 422 15185944
    [Google Scholar]
  177. Khater HF Introductory chapter: Back to the future-solutions for parasitic problems as old as the pyramids. Natural remedies in the fight against parasites London InTechOpen 2017
    [Google Scholar]
  178. Pavela R. Benelli G. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors - A review. Exp. Parasitol. 2016 167 103 108 27260568
    [Google Scholar]
  179. Barradas T.N. Senna J.P. Ricci E. Junior Mansur C.R. Polymer-based drug delivery systems applied to insects repellents devices: A review. Curr. Drug Deliv. 2016 13 2 221 235 26674198
    [Google Scholar]
  180. Misni N. Nor Z.M. Ahmad R. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. J. Vector Borne Dis. 2017 54 1 44 53 28352045
    [Google Scholar]
  181. Ribeiro A.D. Marques J. Forte M. Correia F.C. Parpot P. Oliveira C. Pereira A.I. Andrade L. Azenha C. Mendes A. Alves G.M. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent. Appl. Mater. Today 2016 5 90 97
    [Google Scholar]
  182. Krajick K. Medical entomology. Keeping the bugs at bay. Science 2006 313 5783 36 38 16825548
    [Google Scholar]
  183. Moore S.J. Mordue Luntz A.J. Logan J.G. Insect bite prevention. Infect. Dis.Clin. 2012 26 3 655 673 22963776
    [Google Scholar]
  184. Yadav N.P. Rai V.K. Mishra N. Sinha P. Bawankule D.U. Pal A. Tripathi A.K. Chanotiya C.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil. BioMed Res. Int. 2014 2014 786084 25379509
    [Google Scholar]
  185. Vesin A. Glorennec P. Le Bot B. Wortham H. Bonvallot N. Quivet E. Transfluthrin indoor air concentration and inhalation exposure during application of electric vaporizers. Environ. Int. 2013 60 1 6 23973617
    [Google Scholar]
  186. Khater H.F. Selim A.M. Abouelella G.A. Abouelella N.A. Murugan K. Vaz N.P. Govindarajan M. Commercial mosquito repellents and their safety concerns. Malaria. 2019 1 1 27
    [Google Scholar]
  187. Meshram G.P. Rao K.M.N. N,N-diethylphenylacetamide, an insect repellent: Absence of mutagenic response in the in vitro Ames test and in vivo mouse micronucleus test. Food Chem. Toxicol. 1988 26 9 791 796 3209142
    [Google Scholar]
  188. Alpern J.D. Dunlop S.J. Dolan B.J. Stauffer W.M. Boulware D.R. Personal protection measures against mosquitoes, ticks, and other arthropods. Med. Clin. North Am. 2016 100 2 303 316 10.1016/j.mcna.2015.08.019 26900115
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230322355240903072704
Loading
/content/journals/aiaamc/10.2174/0118715230322355240903072704
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: insect repellents ; synthetic repellents ; Insects ; repellent plants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test