Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Plant-based repellents have been used for generations as personal protection against mosquitoes. Ethnobotanical studies provide valuable knowledge for developing natural products. Commercial repellents with plant-based ingredients are popular, but insufficient studies follow Pesticide Evaluation Scheme WHO guidelines. Further standardized studies are needed to evaluate repellent compounds and develop high-repellency and safe products. Essential Oils (EOs) from aromatic plants have gained popularity as low-risk insecticides due to their low toxicity and short environmental persistence. These plant-derived EOs, produced through steam distillation, have repellent, insecticidal, and growth-reducing effects on various insects. They control phytophagous insects, bite flies, and home and garden insects. US registration is the main hurdle for new EOs. This review explores the use of essential oils from plants as a natural repellent, focusing on their effectiveness and synergistic effects. Essential oils are volatile mixtures of hydrocarbons with diverse functional groups, and their effectiveness is linked to monoterpenes and sesquiterpenes. Synergistic effects can improve their effectiveness, and the use of other natural products, like vanillin, can increase protection time. ., ., and are among the most promising plant families.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230322355240903072704
2024-10-16
2025-06-17
Loading full text...

Full text loading...

References

  1. ConteJ.E.Jr A novel approach to preventing insect-borne diseases.N. Engl. J. Med.19973371178578610.1056/NEJM1997091133711129287238
    [Google Scholar]
  2. GhoshA. ChowdhuryN. ChandraG. Plant extracts as potential mosquito larvicides.Indian J. Med. Res.2012135558159822771587
    [Google Scholar]
  3. DayanF.E. CantrellC.L. DukeS.O. Natural products in crop protection.Bioorg. Med. Chem.200917124022403410.1016/j.bmc.2009.01.04619216080
    [Google Scholar]
  4. FarzaeiM.H. AbbasabadiZ. ArdekaniM.R.S. RahimiR. FarzaeiF. Parsley: A review of ethnopharmacology, phytochemistry and biological activities.J. Tradit. Chin. Med.201333681582610.1016/S0254‑6272(14)60018‑224660617
    [Google Scholar]
  5. IsmanM.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.Annu. Rev. Entomol.2006511456610.1146/annurev.ento.51.110104.15114616332203
    [Google Scholar]
  6. ArlianL.G. RunyanR.A. SorlieL.B. EstesS.A. Host-seeking behavior of Sarcoptes scabiei.J. Am. Acad. Dermatol.198411459459810.1016/S0190‑9622(84)70212‑X6436342
    [Google Scholar]
  7. ArlianL.G. Vyszenski-MoherD.L. Response of Sarcoptes scabiei var. canis (Acari: Sarcoptidae) to lipids of mammalian skin.J. Med. Entomol.1995321344110.1093/jmedent/32.1.347869340
    [Google Scholar]
  8. DasN.G. BaruahI. TalukdarP.K. DasS.C. Evaluation of botanicals as repellents against mosquitoes.J. Vector Borne Dis.2003401-2495315119071
    [Google Scholar]
  9. KilonzoB.S. NgomuoA.J. SabuniC.A. MgodeG.F. Effects of Azadirachta indica (Neem) extract on livestock fleas in Morogoro district, Tanzania.Int. J. Trop. Insect Sci.2001211899210.1017/S1742758400020099
    [Google Scholar]
  10. OkumuF.O. KnolsB.G.J. FillingerU. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae.Malar. J.2007616310.1186/1475‑2875‑6‑6317519000
    [Google Scholar]
  11. McCABEE.T. BarthelW.F. GertlerS.I. HallS.A. Insect Repellents. Iii. N, N-Diethylamides1.J. Org. Chem.195419449349810.1021/jo01369a003
    [Google Scholar]
  12. CorbelV. StankiewiczM. PennetierC. FournierD. StojanJ. GirardE. DimitrovM. MolgóJ. HougardJ.M. LapiedB. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet.BMC Biol.2009714710.1186/1741‑7007‑7‑4719656357
    [Google Scholar]
  13. XiaY. WangG. BuscariolloD. PittsR.J. WengerH. ZwiebelL.J. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae.Proc. Natl. Acad. Sci. USA2008105176433643810.1073/pnas.080100710518427108
    [Google Scholar]
  14. DitzenM. PellegrinoM. VosshallL.B. Insect odorant receptors are molecular targets of the insect repellent DEET.Science200831958711838184210.1126/science.115312118339904
    [Google Scholar]
  15. SyedZ. LealW.S. Mosquitoes smell and avoid the insect repellent DEET.Proc. Natl. Acad. Sci. USA200810536135981360310.1073/pnas.080531210518711137
    [Google Scholar]
  16. BoeckhJ. BreerH. GeierM. HoeverF.P. KrügerB.W. NentwigG. SassH. Acylated 1, 3-aminopropanols as repellents against bloodsucking arthropods.Pestic. Sci.199648435937310.1002/(SICI)1096‑9063(199612)48:4<359::AID‑PS490>3.0.CO;2‑Z
    [Google Scholar]
  17. SanghongR. JunkumA. ChaithongU. JitpakdiA. RiyongD. TuetunB. ChampakaewD. IntirachJ. MuangmoonR. ChansangA. PitasawatB. Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae).Malar. J.201514130710.1186/s12936‑015‑0816‑y26249666
    [Google Scholar]
  18. GovindarajanM. RajeswaryM. ArivoliS. TennysonS. BenelliG. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?Parasitol. Res.201611551807181610.1007/s00436‑016‑4920‑x26792432
    [Google Scholar]
  19. NathanS.S. KalaivaniK. MuruganK. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae).Acta Trop.2005961475510.1016/j.actatropica.2005.07.00216112073
    [Google Scholar]
  20. SnowR.W. GuerraC.A. NoorA.M. MyintH.Y. HayS.I. The global distribution of clinical episodes of Plasmodium falciparum malaria.Nature2005434703021421710.1038/nature0334215759000
    [Google Scholar]
  21. BrookeB.D. HuntR.H. KoekemoerL.L. Dossou-YovoJ. CoetzeeM. Evaluation of a polymerase chain reaction assay for detection of pyrethroid insecticide resistance in the malaria vector species of the Anopheles gambiae complex.J. Am. Mosq. Control Assoc.199915456556810612620
    [Google Scholar]
  22. LengelerC. SmithT.A. Armstrong SchellenbergJ. Focus on the effect of bednets on malaria morbidity and mortality.Parasitol. Today199713312312410.1016/S0169‑4758(97)84870‑315275117
    [Google Scholar]
  23. BeierJ.C. KilleenG.F. GithureJ.I. Short report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa.Am. J. Trop. Med. Hyg.199961110911310.4269/ajtmh.1999.61.10910432066
    [Google Scholar]
  24. CasimiroS. ColemanM. MohloaiP. HemingwayJ. SharpB. Insecticide resistance in Anopheles funestus (Diptera: Culicidae) from Mozambique.J. Med. Entomol.200643226727510.1093/jmedent/43.2.26716619610
    [Google Scholar]
  25. World Health OrganizationWorld Malaria Report.2012Available From: www.who.int/ malaria/publications/world_malaria_report_2012/en/
  26. PicherskyE. GershenzonJ. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense.Curr. Opin. Plant Biol.20025323724310.1016/S1369‑5266(02)00251‑011960742
    [Google Scholar]
  27. HarrewijnP. MinksA.K. MollemaC. Evolution of plant volatile production in insect-plant relationships.Chemoecology19945-62557310.1007/BF01259434
    [Google Scholar]
  28. MooreSJ LengletA HillN Plant-based insect repellents.Insect RepellentsMilton Park, AbingdonRoutledge200610.1201/9781420006650.ch14
    [Google Scholar]
  29. NtoniforN.N. NguforC.A. KimbiH.K. ObenB.O. Traditional use of indigenous mosquito-repellents to protect humans against mosquitoes and other insect bites in a rural community of Cameroon.East Afr. Med. J.2006831055355817310681
    [Google Scholar]
  30. CasasA. Valiente-BanuetA. ViverosJ.L. CaballeroJ. CortésL. DávilaP. LiraR. RodríguezI. Plant resources of the Tehuacán-Cuicatlán valley, Mexico.Econ. Bot.200155112916610.1007/BF02864551
    [Google Scholar]
  31. CurtisCF Appropriate technology in vector control.Boca RatonCRC Press201810.1201/9781351069823
    [Google Scholar]
  32. BelaynehA. BussaN.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia.J. Ethnobiol. Ethnomed.20141011810.1186/1746‑4269‑10‑1824499509
    [Google Scholar]
  33. BelaynehA. AsfawZ. DemissewS. BussaN.F. Medicinal plants potential and use by pastoral and agro-pastoral communities in Erer Valley of Babile Wereda, Eastern Ethiopia.J. Ethnobiol. Ethnomed.2012814210.1186/1746‑4269‑8‑4223082858
    [Google Scholar]
  34. KeneaO. TekieH. Ethnobotanical survey of plants traditionally used for malaria prevention and treatment in selected resettlement and indigenous villages in Sasiga District, Western Ethiopia.J. Biol. Agric. Healthc.2015511
    [Google Scholar]
  35. MeragiawM. AsfawZ. Review of antimalarial, pesticidal and repellent plants in the Ethiopian traditional herbal medicine. Research & Reviews.Journal of Herbal Science.2014332145
    [Google Scholar]
  36. KarunamoorthiK. HailuT. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: An ethnobotanical survey.J. Ethnobiol. Ethnomed.20141012210.1186/1746‑4269‑10‑2224521138
    [Google Scholar]
  37. BerhanA. AsfawZ. KelbessaE. Ethnobotany of plants used as insecticides, repellents and antimalarial agents in Jabitehnan district, West Gojjam.Sinet Ethiop. J. Sci.2006291879210.4314/sinet.v29i1.18263
    [Google Scholar]
  38. GallA ShenkuteZ. Ethiopian traditional medications and their interactions with conventional drugs.2009Available From: https://ethnomed.org/resource/ethiopian-traditional-and-herbal-medications-and-their-interactions-with-conventional-drugs/#
  39. BekeleD. AsfawZ. PetrosB. TekieH. Ethnobotanical study of plants used for protection against insect bite and for the treatment of livestock health problems in rural areas of Akaki District, Eastern Shewa, Ethiopia.Topclass J Herbal Med.2012121224
    [Google Scholar]
  40. KidaneD. TomassZ. DejeneT. Community knowledge of traditional mosquito repellent plants in Kolla Temben District, Tigray, Northern Ethiopia.Sci. Res. Essays201382411391144
    [Google Scholar]
  41. KarunamoorthiK. IlangoK. EndaleA. Ethnobotanical survey of knowledge and usage custom of traditional insect/mosquito repellent plants among the Ethiopian Oromo ethnic group.J. Ethnopharmacol.2009125222422910.1016/j.jep.2009.07.00819607902
    [Google Scholar]
  42. MeragiawM. Wild useful plants with emphasis on traditional use of medicinal and edible plants by the people of Aba’ala, North-eastern Ethiopia.J Med Plant Herb Ther Res.20164116
    [Google Scholar]
  43. DebellaA. TayeA. AbebeD. MudiK. MelakuD. TayeG. Screening of some Ethiopian medicinal plants for mosquito larvicidal effects and phytochemical constituents.Pharmacol Online.20073231243
    [Google Scholar]
  44. WeissenbergM. LevyA. SvobodaJ.A. IshaayaI. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta.Phytochemistry199847220320910.1016/S0031‑9422(97)00565‑79431673
    [Google Scholar]
  45. BüyükgüzelE. BüyükgüzelK. SnelaM. ErdemM. RadtkeK. ZiemnickiK. AdamskiZ. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella.Cell Biol. Toxicol.201329211712910.1007/s10565‑013‑9240‑723475114
    [Google Scholar]
  46. BüyükgüzelE. BüyükgüzelK. ErdemM. AdamskiZ. AdamskiZ. MarciniakP. ZiemnickiK. VentrellaE. ScranoL. BufoS.A. THE INFLUENCE OF DIETARY α‐SOLANINE ON THE WAXMOTH Galleria mellonella L.Arch. Insect Biochem. Physiol.2013831152410.1002/arch.2108923494897
    [Google Scholar]
  47. FriedmanM. Tomato glycoalkaloids: Role in the plant and in the diet.J. Agric. Food Chem.200250215751578010.1021/jf020560c12358437
    [Google Scholar]
  48. NenaahG.E. Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae).J. Stored Prod. Res.201147318519010.1016/j.jspr.2010.11.003
    [Google Scholar]
  49. Sanchez ChopaC. BenziV. AlzogarayR. FerreroA.A. Repellent activity of hexanic and ethanolic extracts from fruits of Solanum eleagnifolium (Solanaceae) against Blattella germanica (Insecta, Dictyoptera, Blattellidae) adults.Bol. Latinoam. Caribe Plantas Med. Aromat.200983172175
    [Google Scholar]
  50. DineshD. KumariS. KumarV. DasP. The potentiality of botanicals and their products as an alternative to chemical insecticides to sandflies (Diptera: Psychodidae): A review.J. Vector Borne Dis.20145111710.4103/0972‑9062.13013924717195
    [Google Scholar]
  51. BoulogneI. PetitP. Ozier-LafontaineH. DesfontainesL. Loranger-MercirisG. Insecticidal and antifungal chemicals produced by plants: A review.Environ. Chem. Lett.201210432534710.1007/s10311‑012‑0359‑1
    [Google Scholar]
  52. JerzykiewiczJ. [Alkaloids of Solanaceae (nightshade plants)].Postepy Biochem.200753328028618399356
    [Google Scholar]
  53. HassineT.B. MansourA.B. HammamiS. Case report of fatal poisoning by Nicotina tabacum in Cattle in Tunisia.Rev. Med. Vet. (Toulouse)2013164141144
    [Google Scholar]
  54. IndhumathiT. MohandassS. ShibiA. Acute toxicity study of ethanolic extract of Solanum incanum L. fruit.Asian J. Pharm. Clin. Res.2014798100
    [Google Scholar]
  55. DiazG. Toxicosis by plant alkaloids in humans and animals in Colombia.Toxins (Basel)20157125408541610.3390/toxins712489226690479
    [Google Scholar]
  56. LachmanJ HamouzK OrsákM PivecV Potato glycoalkaloids and their significance in plant protection and human nutrition-review.Rostlinna Vyroba2001474181191
    [Google Scholar]
  57. Berthold-PlutaA. Stasiak-RóżańskaL. PlutaA. GarbowskaM. Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains.Eur. Food Res. Technol.201924551137114710.1007/s00217‑018‑3218‑x
    [Google Scholar]
  58. Osman Mohamed AliE. ShakilN.A. RanaV.S. SarkarD.J. MajumderS. KaushikP. SinghB.B. KumarJ. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii.Ind. Crops Prod.201710837938710.1016/j.indcrop.2017.06.061
    [Google Scholar]
  59. Ruiz-NavajasY. Viuda-MartosM. SendraE. Perez-AlvarezJ.A. Fernández-LópezJ. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils.Food Control201330238639210.1016/j.foodcont.2012.07.052
    [Google Scholar]
  60. WangC. WangL. LiC. HuC. ZhaoS. Anti-proliferation activities of three bioactive components purified by high-speed counter-current chromatography in essential oil from ginger.Eur. Food Res. Technol.2020246479580510.1007/s00217‑020‑03446‑7
    [Google Scholar]
  61. KindlM. BucarF. JelićD. BrajšaK. BlažekovićB. Vladimir-KneževićS. Comparative study of polyphenolic composition and anti-inflammatory activity of Thymus species.Eur. Food Res. Technol.201924591951196210.1007/s00217‑019‑03297‑x
    [Google Scholar]
  62. MiyakadoM. NakayamaI. YoshiokaH. Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L.Agric. Biol. Chem.19804471701170310.1080/00021369.1980.10864200
    [Google Scholar]
  63. ScottI.M. PunianiE. DurstT. PhelpsD. MeraliS. AssabguiR.A. Sánchez-VindasP. PovedaL. PhilogèneB.J.R. ArnasonJ.T. Insecticidal activity of Piper tuberculatum Jacq. extracts: Synergistic interaction of piperamides.Agric. For. Entomol.20024213714410.1046/j.1461‑9563.2002.00137.x
    [Google Scholar]
  64. FengR. IsmanM.B. Selection for resistance to azadirachtin in the green peach aphid,Myzus persicae.Experientia199551883183310.1007/BF01922438
    [Google Scholar]
  65. BelzileA.S. MajerusS.L. PodeszfinskiC. GuilletG. DurstT. ArnasonJ.T. Dillapiol derivatives as synergists: Structure–activity relationship analysis.Pestic. Biochem. Physiol.2000661334010.1006/pest.1999.2453
    [Google Scholar]
  66. Usha RaniP. JyothsnaY. Biochemical and enzymatic changes in rice plants as a mechanism of defense.Acta Physiol. Plant.201032469570110.1007/s11738‑009‑0449‑2
    [Google Scholar]
  67. SambangiP. RaniP.U. Physiological effects of resveratrol and coumaric acid on two major groundnut pests and their egg parasitoidbehavior.Arch. Insect Biochem. Physiol.201691423024510.1002/arch.2132026890503
    [Google Scholar]
  68. SambangiP. Usha RaniP. Induction of phenolic acids and metals in Arachis hypogaea L. plants due to feeding of three lepidopteran pests.Arthropod-Plant Interact.20137551752510.1007/s11829‑013‑9263‑2
    [Google Scholar]
  69. DixonR.A. PaivaN.L. Stress-induced phenylpropanoid metabolism.Plant Cell1995771085109710.2307/387005912242399
    [Google Scholar]
  70. BeranF. KöllnerT.G. GershenzonJ. ThollD. Chemical convergence between plants and insects: Biosynthetic origins and functions of common secondary metabolites.New Phytol.20192231526710.1111/nph.1571830707438
    [Google Scholar]
  71. CheongS.P.S. HuangJ. BendenaW.G. TobeS.S. HuiJ.H.L. Evolution of ecdysis and metamorphosis in arthropods: The rise of regulation of juvenile hormone.Integr. Comp. Biol.201555587889010.1093/icb/icv06626105594
    [Google Scholar]
  72. QuZ. BendenaW.G. TobeS.S. HuiJ.H.L. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA.J. Steroid Biochem. Mol. Biol.2018184697610.1016/j.jsbmb.2018.01.01329355708
    [Google Scholar]
  73. YuF. UtsumiR. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis.Cell. Mol. Life Sci.200966183043305210.1007/s00018‑009‑0066‑719547916
    [Google Scholar]
  74. DegenhardtJ. KöllnerT.G. GershenzonJ. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.Phytochemistry20097015-161621163710.1016/j.phytochem.2009.07.03019793600
    [Google Scholar]
  75. TsangS.S.K. LawS.T.S. LiC. QuZ. BendenaW.G. TobeS.S. HuiJ.H.L. Diversity of insect sesquiterpenoid regulation.Front. Genet.202011102710.3389/fgene.2020.0102733133135
    [Google Scholar]
  76. AbbottW.S. A method of computing the effectiveness of an insecticide.J. Econ. Entomol.192518226526710.1093/jee/18.2.265a
    [Google Scholar]
  77. BrozaM. Seasonal changes in population of Heliothis armigera (Hb.) (Lepidoptera; Noctuidae) in cotton fields in Israel and its control with a Bacillus thuringiensis preparation.J. Appl. Entomol.19861021-536337010.1111/j.1439‑0418.1986.tb00934.x
    [Google Scholar]
  78. IbrahimMA KainulainenP AflatuniA TiilikkalaK HolopainenJK Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests.Agr. Food Sci. Finland20081024325910.23986/afsci.5697
    [Google Scholar]
  79. SaraSB FolorunsoOA Potentials of utilizing neem tree for desertification control in Nigeria.Sustain. Indus. Utiliz. Neem Tree200220024551
    [Google Scholar]
  80. DebjitB. JitenderY. TripathiK.K. KumarK.S. Herbal remedies of Azadirachta indica and its medicinal application.J. Chem. Pharm. Res.2010216272
    [Google Scholar]
  81. AnsariM.A. RazdanR.K. Operational feasibility of malaria control by burning neem oil in kerosene lamp in Beel Akbarpur village, District Ghaziabad, India.Indian J. Malariol.199633281878952172
    [Google Scholar]
  82. BiswasK. ChattopadhyayI. BanerjeeR.K. BandyopadhyayU. Biological activities and medicinal properties of neem (Azadirachta indica).Curr. Sci.2002200213361345
    [Google Scholar]
  83. NicolettiM. MuruganK. CanaleA. BenelliG. Neem-borne molecules as eco-friendly control tools against mosquito vectors of economic importance.Curr. Org. Chem.201620252681268910.2174/1385272820666160218233923
    [Google Scholar]
  84. DuaV.K. PandeyA.C. RaghavendraK. GuptaA. SharmaT. DashA.P. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes.Malar. J.20098112410.1186/1475‑2875‑8‑12419500429
    [Google Scholar]
  85. AnjaliC.H. SharmaY. MukherjeeA. ChandrasekaranN. Neem oil ( Azadirachta indica ) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus.Pest Manag. Sci.201268215816310.1002/ps.223321726037
    [Google Scholar]
  86. TrongtokitY. RongsriyamY. KomalamisraN. ApiwathnasornC. Comparative repellency of 38 essential oils against mosquito bites.Phytother. Res.200519430330910.1002/ptr.163716041723
    [Google Scholar]
  87. KoulO. Effect of neem extracts and azadirachtin on fertility and fecundity of cabbage aphid, Brevicorynebrassicae (L.).Pestic. Res. J.1998102258261
    [Google Scholar]
  88. MacchioniF. SfingiM. ChiavacciD. CecchiF. Larvicidal and pupicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes Aedes albopictus (Skuse, 1894)(Diptera: Culicidae).Acta Zool. Bulg.2020723479485
    [Google Scholar]
  89. Lis-BalchinM. Lavender: The genus Lavandula.Boca Raton, FloridaCRC press200210.1201/9780203216521
    [Google Scholar]
  90. CosimiS. RossiE. CioniP.L. CanaleA. Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.).J. Stored Prod. Res.200945212513210.1016/j.jspr.2008.10.002
    [Google Scholar]
  91. PapachristosD.P. KaramanoliK.I. StamopoulosD.C. Menkissoglu-SpiroudiU. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say).Pest Manag. Sci.200460551452010.1002/ps.79815154521
    [Google Scholar]
  92. van TolR.W. SwartsH.J. van der LindenA. VisserJ.H. Repellence of the red bud borer Resseliellaoculiperda from grafted apple trees by impregnation of rubber budding strips with essential oils. Pest Management Science: Formerly.Pestic. Sci.200763548349010.1002/ps.137417421054
    [Google Scholar]
  93. RozmanV. KalinovicI. KorunicZ. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects.J. Stored Prod. Res.200743434935510.1016/j.jspr.2006.09.001
    [Google Scholar]
  94. CappelloG. SpezzaferroM. GrossiL. ManzoliL. MarzioL. Peppermint oil (Mintoil®) in the treatment of irritable bowel syndrome: A prospective double blind placebo-controlled randomized trial.Dig. Liver Dis.200739653053610.1016/j.dld.2007.02.00617420159
    [Google Scholar]
  95. RobertI.K. Handbook of pesticide toxicology.New YorkAcademic Press2001823
    [Google Scholar]
  96. AnsariM.A. VasudevanP. TandonM. RazdanR.K. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil.Bioresour. Technol.200071326727110.1016/S0960‑8524(99)00079‑6
    [Google Scholar]
  97. LeeS.E. LeeB.H. ChoiW.S. ParkB.S. KimJ.G. CampbellB.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L).Pest Manag. Sci.200157654855310.1002/ps.32211407032
    [Google Scholar]
  98. KumarA DuttaGP Curr. Sci.19875618959960
    [Google Scholar]
  99. Cortés-RojasD.F. de SouzaC.R.F. OliveiraW.P. Clove (Syzygium aromaticum): A precious spice.Asian Pac. J. Trop. Biomed.201442909610.1016/S2221‑1691(14)60215‑X25182278
    [Google Scholar]
  100. BatihaG.E.S. BeshbishyA.M. TayebwaD.S. ShaheenH.M. YokoyamaN. IgarashiI. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites.Ticks Tick Borne Dis.201910594995810.1016/j.ttbdis.2019.04.01631101552
    [Google Scholar]
  101. ChomchalowN. Spice production in Asia—An overview.Proceedings of the Conference IBC’s Asia Spice Markets 96 Conference27-28 May 1996Singapore1996
    [Google Scholar]
  102. SilvaJ. AbebeW. SousaS.M. DuarteV.G. MachadoM.I.L. MatosF.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus.J. Ethnopharmacol.2003892-327728310.1016/j.jep.2003.09.00714611892
    [Google Scholar]
  103. CaiL. WuC.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens.J. Nat. Prod.1996591098799010.1021/np960451q8904847
    [Google Scholar]
  104. El HagE.A. El NadiA.H. ZaitoonA.A. Toxic and growth retarding effects of three plant extracts on Culex pipiens larvae (Diptera: Culicidae).Phytother. Res.199913538839210.1002/(SICI)1099‑1573(199908/09)13:5<388::AID‑PTR455>3.0.CO;2‑U10441777
    [Google Scholar]
  105. YangY.C. LeeS.H. LeeW.J. ChoiD.H. AhnY.J. Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis.J. Agric. Food Chem.200351174884488810.1021/jf034225f12903940
    [Google Scholar]
  106. HoS.H. ChengL.P.L. SimK.Y. TanH.T.W. Potential of cloves (Syzygium aromaticum (L.) Merr. and Perry as a grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch.Postharvest Biol. Technol.199441-217918310.1016/0925‑5214(94)90019‑1
    [Google Scholar]
  107. MaiaM.F. MooreS.J. Plant-based insect repellents: A review of their efficacy, development and testing.Malar. J.201110S1Suppl. 1S1110.1186/1475‑2875‑10‑S1‑S1121411012
    [Google Scholar]
  108. LankageJ. Cinnamon, tree that gave the name to the country and changed the course of history.J. Organ. Prof. Assoc. Sri Lanka.2013284048
    [Google Scholar]
  109. ShuZ. XiwenL. JieL. Van der WerffH. CINNAMOMUM Schaeffer, Bot. Exped. 74. 1760, nom. cons. Flora.China20087166187
    [Google Scholar]
  110. SinghG. MauryaS. deLampasonaM.P. CatalanC.A.N. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents.Food Chem. Toxicol.20074591650166110.1016/j.fct.2007.02.03117408833
    [Google Scholar]
  111. DaiD.N. ChungN.T. HuongL.T. HungN.H. ChauD.T.M. YenN.T. SetzerW.N. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum growing wild in north central Vietnam.Molecules2020256130310.3390/molecules2506130332178471
    [Google Scholar]
  112. HaririM GhiasvandR Cinnamon and chronic diseases.Drug Discovery from Mother NatureBerlin, HeidelbergSpringer Link201610.1007/978‑3‑319‑41342‑6_1
    [Google Scholar]
  113. NolletL.M. RathoreH.S. Green pesticides handbook: Essential oils for pest control.Boca Raton, FloridaCRC Press201710.1201/9781315153131
    [Google Scholar]
  114. SchultzG. SimbroE. BeldenJ. ZhuJ. CoatsJ. Catnip, Nepeta cataria (Lamiales: Lamiaceae)—A closer look: Seasonal occurrence of nepetalactone isomers and comparative repellency of three terpenoids to insects.Environ. Entomol.20043361562156910.1603/0046‑225X‑33.6.1562
    [Google Scholar]
  115. BernierU.R. FurmanK.D. KlineD.L. AllanS.A. BarnardD.R. Comparison of contact and spatial repellency of catnip oil and N,N-diethyl-3-methylbenzamide (deet) against mosquitoes.J. Med. Entomol.200542330631115962779
    [Google Scholar]
  116. PetersonC.J. CoatsJ.R. Catnip essential oil and its nepetalactone isomers as repellents for mosquitoes. InRecent developments in invertebrate repellents.Washington, D.C.American Chemical Society20115965
    [Google Scholar]
  117. WallerG.R. PriceG.H. MitchellE.D. Feline attractant, cis,trans-nepetalactone: Metabolism in the domestic cat.Science196916438851281128210.1126/science.164.3885.12815770619
    [Google Scholar]
  118. KlunJ.A. SchmidtW.F. DebbounM. Stereochemical effects in an insect repellent.J. Med. Entomol.200138680981210.1603/0022‑2585‑38.6.80911761378
    [Google Scholar]
  119. LaskaM. GaliziaC.G. Enantioselectivity of odor perception in honeybees (Apis mellifera carnica).Behav. Neurosci.2001115363263910.1037/0735‑7044.115.3.63211439452
    [Google Scholar]
  120. BirkettM.A. HassanaliA. HoglundS. PetterssonJ. PickettJ.A. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites.Phytochemistry201172110911410.1016/j.phytochem.2010.09.01621056438
    [Google Scholar]
  121. World Health OrganizationEvaluation and testing of insecticides. Report of the WHO Informal Consultation, 7−11 October 1996, WHO/HQ, Geneva.1996Available From: https://www.who.int/publications/i/item/ctd-whopes-ic-96.1
  122. ZhuJ.J. ZengX.P. BerkebileD. DuH.J. TongY. QianK. Efficacy and safety of catnip ( Nepeta cataria ) as a novel filth fly repellent *.Med. Vet. Entomol.200923320921610.1111/j.1365‑2915.2009.00809.x19712151
    [Google Scholar]
  123. ShabnumS. WagayM.G. Essential oil composition of Thymus vulgaris L. and their uses.J. Res. Dev. (Srinagar)2011118394
    [Google Scholar]
  124. SakkasH PapadopoulouC Antimicrobial activity of basil, oregano, and thyme essential oils.J. Microbiol. Biotechnol.201727342943810.4014/jmb.1608.08024
    [Google Scholar]
  125. BorugăO JianuC MişcăC GoleţI GruiaAT HorhatFG Thymus vulgaris essential oil: Chemical composition and antimicrobial activity.JJ Med Life.20147Spec Iss 35660
    [Google Scholar]
  126. WuL. HuoX. ZhouX. ZhaoD. HeW. LiuS. LiuH. FengT. WangC. Acaricidal activity and synergistic effect of thyme oil constituents against carmine spider mite (TetranychusCinnabarinus (Boisduval)).Molecules20172211187310.3390/molecules2211187329104267
    [Google Scholar]
  127. MartinsI.M. RodriguesS.N. BarreiroF. RodriguesA.E. Microencapsulation of thyme oil by coacervation.J. Microencapsul.200926866767510.3109/0265204080264659919888875
    [Google Scholar]
  128. SimonazziA CidAG VillegasM RomeroAI PalmaSD BermúdezJM Nanotechnology applications in drug controlled release.Drug targeting and stimuli sensitive drug delivery systems.New York, United StatesWilliam Andrew Publishing201810.1016/B978‑0‑12‑813689‑8.00003‑3
    [Google Scholar]
  129. ParisiOI PuociF RestucciaD FarinaG IemmaF PicciN Polyphenols and their formulations: Different strategies to overcome the drawbacks associated with their poor stability and bioavailability.Polyphenols in human health and diseaseCambridge, MassachusettsAcademic Press201429
    [Google Scholar]
  130. KalaS. SoganN. NaikS.N. AgarwalA. KumarJ. Impregnation of pectin-cedarwood essential oil nanocapsules onto mini cotton bag improves larvicidal performances.Sci. Rep.20201011410710.1038/s41598‑020‑70889‑z32839484
    [Google Scholar]
  131. MakriO. KintziosS. Ocimum sp.(basil): Botany, cultivation, pharmaceutical properties, and biotechnology.J. Herbs Spices Med. Plants200813312315010.1300/J044v13n03_10
    [Google Scholar]
  132. AvetisyanA. MarkosianA. PetrosyanM. SahakyanN. BabayanA. AloyanS. TrchounianA. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.BMC Complement. Altern. Med.20171716010.1186/s12906‑017‑1587‑528103929
    [Google Scholar]
  133. JirovetzL. BuchbauerG. ShafiM.P. KaniampadyM.M. Chemotaxonomical analysis of the essential oil aroma compounds of four different Ocimum species from southern India.Eur. Food Res. Technol.2003217212012410.1007/s00217‑003‑0708‑1
    [Google Scholar]
  134. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): A review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  135. BączekK. KosakowskaO. GniewoszM. GientkaI. WęglarzZ. Sweet basil (Ocimumbasilicum L.) productivity and raw material quality from organic cultivation.Agronomy (Basel)201996279
    [Google Scholar]
  136. Abo-El SeoudM.A. SarhanM.M. OmarA.E. HelalM.M. Biocides formulation of essential oils having antimicrobial activity.Arch. Phytopathol. Pflanzenschutz2005383175184
    [Google Scholar]
  137. de la ParteE.M. Pérez-VicenteL. BernalB. GarciaD. First report of Peronospora sp. on sweet basil (Ocimumbasilicum) in Cuba.Plant Pathol.201059800
    [Google Scholar]
  138. StephensC. MasamuE.T. KiamaM.G. KetoA.J. KinenekejoM. IchimoriK. LinesJ. Knowledge of mosquitos in relation to public and domestic control activities in the cities of Dar es Salaam and Tanga.Bull. World Health Organ.1995731971047704932
    [Google Scholar]
  139. WhiteG.B. The insect-repellant value of Ocimum SPP. (Labiatae): Traditional anti-mosquito plants.East Afr. Med. J.19735052482524147815
    [Google Scholar]
  140. ElgayyarM. DraughonF.A. GoldenD.A. MountJ.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms.J. Food Prot.20016471019102410.4315/0362‑028X‑64.7.101911456186
    [Google Scholar]
  141. SuppakulP. MiltzJ. SonneveldK. BiggerS.W. Antimicrobial properties of basil and its possible application in food packaging.J. Agric. Food Chem.200351113197320712744643
    [Google Scholar]
  142. CokerH.A. ChukwuaniC.M. IfuduN.D. AinaB.A. The malaria scourge. Concepts in disease management. Nigerian.J. Pharm. (Cairo)2001321947
    [Google Scholar]
  143. GolobP NishimuraH SatohA. Eucalyptus in insect and plant pest control.EucalyptusBoca Raton, FloridaCRC Press2002
    [Google Scholar]
  144. CurtisC.F. Control of disease vectors in the community.Prescott, ArizonaWolfe Publishing Ltd.1991
    [Google Scholar]
  145. LiZ. YangJ. ZhuangX. ZhangZ. Studies on the repellent quwenling.Malaria Res.197419746
    [Google Scholar]
  146. KatzT.M. MillerJ.H. HebertA.A. Insect repellents: Historical perspectives and new developments.J. Am. Acad. Dermatol.200858586587110.1016/j.jaad.2007.10.00518272250
    [Google Scholar]
  147. DormanH.J.D. DeansS.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils.J. Appl. Microbiol.200088230831610.1046/j.1365‑2672.2000.00969.x10736000
    [Google Scholar]
  148. IsmanM.B. MachialC.M. Pesticides based on plant essential oils: From traditional practice to commercialization.Naturally Occurring Bioactive Compounds. Advances in Phytomedicine. RaiM. CarpinellaM.C. New York, USAElsevier20062944
    [Google Scholar]
  149. BakkaliF. AverbeckS. AverbeckD. IdaomarM. Biological effects of essential oils – A review.Food Chem. Toxicol.200846244647510.1016/j.fct.2007.09.10617996351
    [Google Scholar]
  150. NerioL.S. Olivero-VerbelJ. StashenkoE. Repellent activity of essential oils: A review.Bioresour. Technol.2010101137237819729299
    [Google Scholar]
  151. IsmanM.B. Plant essential oils for pest and disease management. Crop protection. 2000 Sep 12;19(8-10):603-8. Kordali S, Aslan I, Çalmaşur O, Cakir A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae).Ind. Crops Prod.2006232162170
    [Google Scholar]
  152. KordaliS. AslanI. ÇalmaşurO. CakirA. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae).Ind. Crops Prod.2006232162170
    [Google Scholar]
  153. BrookerM.I.H. KleinigD.A. Field Guide to Eucalyptus. South-eastern, Australia.3rd edMelbourneBloomings2006
    [Google Scholar]
  154. ZobelB. Eucalyptus in the forest industry.Tappi J. (USA)1988
    [Google Scholar]
  155. BatishD.R. SinghH.P. KohliR.K. KaurS. Eucalyptus essential oil as a natural pesticide.For. Ecol. Manage.2008256122166217410.1016/j.foreco.2008.08.008
    [Google Scholar]
  156. DukeJ.A. USDA-ARS Germplasm Resources Information Network (GRIN).2004Available From: http://www.ars-grin.gov/duke/
  157. MooreSJ DebbounM History of insect repellents.Insect repellents: Principles, methods and uses.Boca Raton, FloridaCRC Press2007
    [Google Scholar]
  158. IslamJ. ZamanK. DuarahS. RajuP.S. ChattopadhyayP. Mosquito repellents: An insight into the chronological perspectives and novel discoveries.Acta Trop.201716721623028040483
    [Google Scholar]
  159. NorrisE.J. CoatsJ.R. Current and future repellent technologies: The potential of spatial repellents and their place in mosquito-borne disease control.Int. J. Environ. Res. Public Health201714212428146066
    [Google Scholar]
  160. LupiE. HatzC. SchlagenhaufP. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. - a literature review.Travel Med. Infect. Dis.201311637441124201040
    [Google Scholar]
  161. LealW.S. The enigmatic reception of DEET - the gold standard of insect repellents.Curr. Opin. Insect Sci.20146939825530943
    [Google Scholar]
  162. DeletreE. SchatzB. BourguetD. ChandreF. WilliamsL. RatnadassA. MartinT. Prospects for repellent in pest control: Current developments and future challenges.Chemoecology201626127142
    [Google Scholar]
  163. KhaterHF Bioactivity of essential oils as green biopesticides: Recent global scenario.Recent Progress in Medicinal Plants.Studium PressLLC, USA2013
    [Google Scholar]
  164. KhaterH.F. Prospects of botanical biopesticides in insect pest management.Pharmacologia.2012312641656
    [Google Scholar]
  165. KhaterHF Ecosmart biorational insecticides: Alternative insect control strategies.Insecticides - Advances in Integrated Pest ManagementLondonInTechOpen2012
    [Google Scholar]
  166. BoeckhJ. BreerH. GeierM. HoeverF.P. KrügerB.W. NentwigG. SassH. Acylated 1, 3‐aminopropanols as repellents against bloodsucking arthropods.Pestic. Sci.199648435937310.1002/(SICI)1096‑9063(199612)48:4<359::AID‑PS490>3.0.CO;2‑Z
    [Google Scholar]
  167. PagesF. DautelH. DuvalletG. KahlO. de GentileL. BoulangerN. Tick repellents for human use: Prevention of tick bites and tick-borne diseases.Vector Borne Zoonotic Dis.2014142859324410143
    [Google Scholar]
  168. FrancesS.P. WatersonD.G. BeebeN.W. CooperR.D. Field evaluation of repellent formulations containing deet and picaridin against mosquitoes in Northern Territory, Australia.J. Med. Entomol.200441341441715185943
    [Google Scholar]
  169. CostantiniC. BadoloA. Ilboudo-SanogoE. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes.Trans. R. Soc. Trop. Med. Hyg.2004981164465215363644
    [Google Scholar]
  170. FrancesS.P. WatersonD.G. BeebeN.W. CooperR.D. Field evaluation of commercial repellent formulations against mosquitoes (Diptera: Culicidae) in Northern Territory, Australia.J. Am. Mosq. Control Assoc.200521448048216506580
    [Google Scholar]
  171. GoodyerL. SchofieldS. Mosquito repellents for the traveller: Does picaridin provide longer protection than DEET?J. Travel Med.201825Suppl. 1S10S1529718433
    [Google Scholar]
  172. BissingerB.W. RoeR.M. Tick repellents: Past, present, and future.Pestic. Biochem. Physiol.20109626379
    [Google Scholar]
  173. NasciRS WirtzRA BrogdonWG Protection against mosquitoes, ticks, and other arthropods.CDC Health Inform. Int. Travel2016201694
    [Google Scholar]
  174. CarrollS.P. Prolonged efficacy of IR3535 repellents against mosquitoes and blacklegged ticks in North America.J. Med. Entomol.200845470671418714871
    [Google Scholar]
  175. StanczykN.M. BrookfieldJ.F. IgnellR. LoganJ.G. FieldL.M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function.Proc. Natl. Acad. Sci. USA2010107198575858020439757
    [Google Scholar]
  176. KlunJ.A. StrickmanD. RowtonE. WilliamsJ. KramerM. RobertsD. DebbounM. Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (Deet) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays.J. Med. Entomol.200441341842215185944
    [Google Scholar]
  177. KhaterHF Introductory chapter: Back to the future-solutions for parasitic problems as old as the pyramids.Natural remedies in the fight against parasitesLondonInTechOpen2017
    [Google Scholar]
  178. PavelaR. BenelliG. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors - A review.Exp. Parasitol.201616710310827260568
    [Google Scholar]
  179. BarradasT.N. SennaJ.P. RicciE.Junior MansurC.R. Polymer-based drug delivery systems applied to insects repellents devices: A review.Curr. Drug Deliv.201613222123526674198
    [Google Scholar]
  180. MisniN. NorZ.M. AhmadR. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites.J. Vector Borne Dis.2017541445328352045
    [Google Scholar]
  181. RibeiroA.D. MarquesJ. ForteM. CorreiaF.C. ParpotP. OliveiraC. PereiraA.I. AndradeL. AzenhaC. MendesA. AlvesG.M. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent.Appl. Mater. Today201659097
    [Google Scholar]
  182. KrajickK. Medical entomology. Keeping the bugs at bay.Science20063135783363816825548
    [Google Scholar]
  183. MooreS.J. Mordue LuntzA.J. LoganJ.G. Insect bite prevention.Infect. Dis.Clin.201226365567322963776
    [Google Scholar]
  184. YadavN.P. RaiV.K. MishraN. SinhaP. BawankuleD.U. PalA. TripathiA.K. ChanotiyaC.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil.BioMed Res. Int.2014201478608425379509
    [Google Scholar]
  185. VesinA. GlorennecP. Le BotB. WorthamH. BonvallotN. QuivetE. Transfluthrin indoor air concentration and inhalation exposure during application of electric vaporizers.Environ. Int.2013601623973617
    [Google Scholar]
  186. KhaterH.F. SelimA.M. AbouelellaG.A. AbouelellaN.A. MuruganK. VazN.P. GovindarajanM. Commercial mosquito repellents and their safety concerns.Malaria.20191127
    [Google Scholar]
  187. MeshramG.P. RaoK.M.N. N,N-diethylphenylacetamide, an insect repellent: Absence of mutagenic response in the in vitro Ames test and in vivo mouse micronucleus test.Food Chem. Toxicol.19882697917963209142
    [Google Scholar]
  188. AlpernJ.D. DunlopS.J. DolanB.J. StaufferW.M. BoulwareD.R. Personal protection measures against mosquitoes, ticks, and other arthropods.Med. Clin. North Am.2016100230331610.1016/j.mcna.2015.08.01926900115
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230322355240903072704
Loading
/content/journals/aiaamc/10.2174/0118715230322355240903072704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test