Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Objectives

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the central nervous system. Immune cell subsets, notably T helper (Th) 17 and Th1, exert important roles in MS pathogenesis. Whereas, Treg cells modulate the disease process. Calcitriol, the active form of vitamin D, and curcumin, a bioactive compound derived from turmeric, play immunomodulatory effects relevant to autoimmune disorders, including MS. The objective of this study is to investigate the effects of calcitriol and Curcumin on Peripheral blood mononuclear cells (PBMCs) of individuals with MS.

Methods

PBMCs from twenty MS patients were isolated, cultured, and exposed to 0.004 µg/mL of calcitriol and 10 µg/mL of curcumin. The cells underwent treatment with singular or combined doses of these components to assess potential cumulative or synergistic immunomodulatory effects. Following treatment, the expression levels of genes and the cellular population of Treg, Th1 and Th17 were evaluated using Real-time PCR and flow cytometry.

Results

Treatment with curcumin and calcitriol led to a significant reduction in the expression levels of inflammatory cytokines and transcription factors related to Th1 and Th17 cells, including , , and . Furthermore, the frequency of these cells decreased following treatment. Additionally, curcumin and calcitriol treatment resulted in a significant upregulation of the gene expression and an increase in the frequency of Treg cells.

Conclusion

This study demonstrates that curcumin and calcitriol can effectively modulate the inflammatory processes intrinsic to MS by mitigating the expression of inflammatory cytokines by Th1 and Th17 cells while concurrently enhancing the regulatory role of Treg cells. Moreover, the combined treatment of curcumin and calcitriol did not yield superior outcomes compared to single-dosing strategies.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230293847240314073359
2024-06-01
2025-01-24
Loading full text...

Full text loading...

References

  1. ChakamianK. JaziR.B. MoghadasiA.N. MansouriF. NodehiM. MotevaseliE. IzadM. YekaninejadS. ShirzadM. BidadK. OraeiM. AnsaripourB. YaraghiS.A.A. Immunosuppressive effects of two probiotics, lactobacillus paracasei DSM 13434 and lactobacillus plantarum DSM 15312, on CD4+ T cells of multiple sclerosis patients.Iran. J. Allergy Asthma Immunol.2023221344510.18502/ijaai.v22i1.1200437002629
    [Google Scholar]
  2. Robat-JaziB. OraeiM. BitarafanS. NaminM.S.A. ZadehN.A. MansouriF. ParastoueiK. AnissianA. YekaninejadM.S. YaraghiS.A.A. Immunoregulatory effect of calcitriol on experimental autoimmune encephalomyelitis (EAE) mice.Iran. J. Allergy Asthma Immunol.202322545246738085147
    [Google Scholar]
  3. KubickN. LazarczykM. StrzałkowskaN. CharutaA. HorbańczukJ.O. SacharczukM. MickaelM.E. Factors regulating the differences in frequency of infiltration of Th17 and Treg of the blood–brain barrier.Immunogenetics202375541742310.1007/s00251‑023‑01310‑y37430007
    [Google Scholar]
  4. RostamiA. CiricB. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination.J. Neurol. Sci.20133331-2768710.1016/j.jns.2013.03.00223578791
    [Google Scholar]
  5. SakaguchiS. OnoM. SetoguchiR. YagiH. HoriS. FehervariZ. ShimizuJ. TakahashiT. NomuraT. Foxp3 + CD25 + CD4 + natural regulatory T cells in dominant self‐tolerance and autoimmune disease.Immunol. Rev.2006212182710.1111/j.0105‑2896.2006.00427.x16903903
    [Google Scholar]
  6. CostantinoC.M. AllanB.C. HaflerD.A. Multiple sclerosis and regulatory T cells.J. Clin. Immunol.200828669770610.1007/s10875‑008‑9236‑x18763026
    [Google Scholar]
  7. VenkenK. HellingsN. ThewissenM. SomersV. HensenK. RummensJ.L. MedaerR. HuppertsR. StinissenP. Compromised CD4 + CD25 high regulatory T‐cell function in patients with relapsing‐remitting multiple sclerosis is correlated with a reduced frequency of FOXP3‐positive cells and reduced FOXP3 expression at the single‐cell level.Immunology20081231798910.1111/j.1365‑2567.2007.02690.x17897326
    [Google Scholar]
  8. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.00528417091
    [Google Scholar]
  9. AhmadR.S. HussainM.B. SultanM.T. ArshadM.S. WaheedM. ShariatiM.A. PlygunS. HashempurM.H. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review.Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/765691932454872
    [Google Scholar]
  10. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  11. XieL. LiX.K. TakaharaS. Curcumin has bright prospects for the treatment of multiple sclerosis.Int. Immunopharmacol.201111332333010.1016/j.intimp.2010.08.01320828641
    [Google Scholar]
  12. LeeW.H. LooC.Y. BebawyM. LukF. MasonR. RohanizadehR. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century.Curr. Neuropharmacol.201311433837810.2174/1570159X1131104000224381528
    [Google Scholar]
  13. YangC.Y. LeungP.S.C. AdamopoulosI.E. GershwinM.E. The implication of vitamin D and autoimmunity: A comprehensive review.Clin. Rev. Allergy Immunol.201345221722610.1007/s12016‑013‑8361‑323359064
    [Google Scholar]
  14. Robat-JaziB. MobiniS. ChahardoliR. MansouriF. NodehiM. EsfahanianF. YaraghiS.A.A. The impact of vitamin D supplementation on the IFNγ-IP10 axis in women with hashimoto’s thyroiditis treated with levothyroxine: A double-blind randomized placebo-controlled trial.Iran. J. Allergy Asthma Immunol.202221440741710.18502/ijaai.v21i4.1028836243929
    [Google Scholar]
  15. AranowC. Vitamin D and the immune system.J. Investig. Med.201159688188610.2310/JIM.0b013e31821b875521527855
    [Google Scholar]
  16. BouillonR. CarmelietG. VerlindenL. van EttenE. VerstuyfA. LudererH.F. LiebenL. MathieuC. DemayM. Vitamin D and human health: Lessons from vitamin D receptor null mice.Endocr. Rev.200829672677610.1210/er.2008‑000418694980
    [Google Scholar]
  17. Robat-JaziB. HosseiniM. ShaygannejadV. NafissiS. RezaeiA. MansourainM. MirmosayyebO. EsmaeilN. High frequency of Tc22 and Th22 cells in myasthenia gravis patients and their significant reduction after thymectomy.Neuroimmunomodulation2018252808810.1159/00049085530071533
    [Google Scholar]
  18. HosseiniM. JaziR.B. ShaygannejadV. NaffisiS. MirmossayebO. RezaeiA. MansourianM. EsmaeilN. Increased proportion of Tc17 and Th17 cells and their significant reduction after thymectomy may be related to disease progression in myasthenia gravis.Neuroimmunomodulation2017244-526427010.1159/00048603729414833
    [Google Scholar]
  19. TryfonosC. MantzorouM. FotiouD. VrizasM. VadikoliasK. PavlidouE. GiaginisC. Dietary supplements on controlling multiple sclerosis symptoms and relapses: Current clinical evidence and future perspectives.Medicines 2019639510.3390/medicines603009531547410
    [Google Scholar]
  20. GauzziM.C. Vitamin D-binding protein and multiple sclerosis: Evidence, controversies, and needs.Mult. Scler.201824121526153510.1177/135245851879243330113253
    [Google Scholar]
  21. JagannathV.A. FilippiniG. Di PietrantonjC. AsokanG.V. RobakE.W. WhamondL. RobinsonS.A. Vitamin D for the management of multiple sclerosis.Cochrane Database Syst. Rev.201899CD00842230246874
    [Google Scholar]
  22. DobsonR. CockH.R. BrexP. GiovannoniG. Vitamin D supplementation.Pract. Neurol.2018181354210.1136/practneurol‑2017‑00172028947637
    [Google Scholar]
  23. SintzelM.B. RamettaM. RederA.T. Vitamin D and multiple sclerosis: A comprehensive review.Neurol. Ther.201871598510.1007/s40120‑017‑0086‑429243029
    [Google Scholar]
  24. SmoldersJ. TorkildsenØ. CamuW. HolmøyT. An update on vitamin D and disease activity in multiple sclerosis.CNS Drugs201933121187119910.1007/s40263‑019‑00674‑831686407
    [Google Scholar]
  25. ZhangX. GeR. ChenH. AhiaforM. LiuB. ChenJ. FanX. Follicular helper CD4+ T cells, follicular regulatory CD4+ T cells, and inducible costimulator and their roles in multiple sclerosis and experimental autoimmune encephalomyelitis.Mediators Inflamm.2021202111010.1155/2021/205896434552387
    [Google Scholar]
  26. WingJ.B. TanakaA. SakaguchiS. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer.Immunity201950230231610.1016/j.immuni.2019.01.02030784578
    [Google Scholar]
  27. ScheineckerC. GöschlL. BonelliM. Treg cells in health and autoimmune diseases: New insights from single cell analysis.J. Autoimmun.202011010237610.1016/j.jaut.2019.10237631862128
    [Google Scholar]
  28. SunC.M. HallJ.A. BlankR.B. BouladouxN. OukkaM. MoraJ.R. BelkaidY. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid.J. Exp. Med.200720481775178510.1084/jem.2007060217620362
    [Google Scholar]
  29. HuanJ. CulbertsonN. SpencerL. BartholomewR. BurrowsG.G. ChouY.K. BourdetteD. ZieglerS.F. OffnerH. VandenbarkA.A. Decreased FOXP3 levels in multiple sclerosis patients.J. Neurosci. Res.2005811455210.1002/jnr.2052215952173
    [Google Scholar]
  30. LiberaD.D. Di MitriD. BergamiA. CentonzeD. GasperiniC. GrassoM.G. GalganiS. MartinelliV. ComiG. AvolioC. MartinoG. BorsellinoG. SallustoF. BattistiniL. FurlanR. T regulatory cells are markers of disease activity in multiple sclerosis patients.PLoS One201166e2138610.1371/journal.pone.002138621731726
    [Google Scholar]
  31. SakaguchiS. YamaguchiT. NomuraT. OnoM. Regulatory T cells and immune tolerance.Cell2008133577578710.1016/j.cell.2008.05.00918510923
    [Google Scholar]
  32. FontenotJ.D. GavinM.A. RudenskyA.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Nat. Immunol.20034433033610.1038/ni90412612578
    [Google Scholar]
  33. HoriS. NomuraT. SakaguchiS. Control of regulatory T cell development by the transcription factor Foxp3.Science200329956091057106110.1126/science.107949012522256
    [Google Scholar]
  34. KhattriR. CoxT. YasaykoS.A. RamsdellF. An essential role for Scurfin in CD4+CD25+ T regulatory cells.Nat. Immunol.20034433734210.1038/ni90912612581
    [Google Scholar]
  35. DengG. SongX. FujimotoS. PiccirilloC.A. NagaiY. GreeneM.I. Foxp3 post-translational modifications and treg suppressive activity.Front. Immunol.201910248610.3389/fimmu.2019.0248631681337
    [Google Scholar]
  36. von KnethenA. HeinickeU. WeigertA. ZacharowskiK. BrüneB. Histone deacetylation inhibitors as modulators of regulatory T cells.Int. J. Mol. Sci.2020217235610.3390/ijms2107235632235291
    [Google Scholar]
  37. PalomaresO. ElewautD. IrvingP.M. JaumontX. TassinariP. Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity?Allergy202277113293330810.1111/all.1544935852798
    [Google Scholar]
  38. DanikowskiK.M. JayaramanS. PrabhakarB.S. Regulatory T cells in multiple sclerosis and myasthenia gravis.J. Neuroinflammation201714111710.1186/s12974‑017‑0892‑828599652
    [Google Scholar]
  39. VigliettaV. Baecher-AllanC. WeinerH.L. HaflerD.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.J. Exp. Med.2004199797197910.1084/jem.2003157915067033
    [Google Scholar]
  40. HaasJ. HugA. ViehöverA. FritzschingB. FalkC.S. FilserA. VetterT. MilkovaL. KorporalM. FritzB. HagenlocherS.B. KrammerP.H. Suri-PayerE. WildemannB. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis.Eur. J. Immunol.200535113343335210.1002/eji.20052606516206232
    [Google Scholar]
  41. MoserT. AkgünK. ProschmannU. SellnerJ. ZiemssenT. The role of TH17 cells in multiple sclerosis: Therapeutic implications.Autoimmun. Rev.2020191010264710.1016/j.autrev.2020.10264732801039
    [Google Scholar]
  42. KamaliA.N. NoorbakhshS.M. HamedifarH. NiaraghJ.F. YazdaniR. BautistaJ.M. AziziG. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders.Mol. Immunol.201910510711510.1016/j.molimm.2018.11.01530502718
    [Google Scholar]
  43. MelnikovM. LopatinaA. Th17-cells in depression: Implication in multiple sclerosis.Front. Immunol.202213101030410.3389/fimmu.2022.101030436189272
    [Google Scholar]
  44. MelnikovM. RogovskiiV. BoykoA. PashenkovM. Dopaminergic therapeutics in multiple sclerosis: Focus on Th17-cell functions.J. Neuroimmune Pharmacol.2020151374710.1007/s11481‑019‑09852‑331011885
    [Google Scholar]
  45. YangJ. SundrudM.S. SkepnerJ. YamagataT. Targeting Th17 cells in autoimmune diseases.Trends Pharmacol. Sci.2014351049350010.1016/j.tips.2014.07.00625131183
    [Google Scholar]
  46. KumarR. TheissA.L. VenuprasadK. RORγt protein modifications and IL-17-mediated inflammation.Trends Immunol.202142111037105010.1016/j.it.2021.09.00534635393
    [Google Scholar]
  47. BalasaR. BarcuteanL. BalasaA. MotataianuA. FilipR.C. ManuD. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis.Hum. Immunol.202081523724310.1016/j.humimm.2020.02.00932122685
    [Google Scholar]
  48. NtolkerasG. BarbaC. MavropoulosA. VasileiadisG.K. DardiotisE. SakkasL.I. HadjigeorgiouG. BogdanosD.P. On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells.Immunol. Res.2019674-531032410.1007/s12026‑019‑09089‑531399952
    [Google Scholar]
  49. MelnikovM. RogovskiiV. BoykoA. PashenkovM. The influence of biogenic amines on Th17-mediated immune response in multiple sclerosis.Mult. Scler. Relat. Disord.201821192310.1016/j.msard.2018.02.01229454152
    [Google Scholar]
  50. McGinleyA.M. EdwardsS.C. RaverdeauM. MillsK.H.G. Th17 cells, γδ T cells and their interplay in EAE and multiple sclerosis.J. Autoimmun.2018879710810.1016/j.jaut.2018.01.00129395738
    [Google Scholar]
  51. MelnikovM. PashenkovM. BoykoA. Dopaminergic receptor targeting in multiple sclerosis: Is there therapeutic potential?Int. J. Mol. Sci.20212210531310.3390/ijms2210531334070011
    [Google Scholar]
  52. ChenC. ZhouY. WangJ. YanY. PengL. QiuW. Dysregulated MicroRNA involvement in multiple sclerosis by induction of T helper 17 cell differentiation.Front. Immunol.20189125610.3389/fimmu.2018.0125629915595
    [Google Scholar]
  53. JoshiS. PantalenaL.C. LiuX.K. GaffenS.L. LiuH. KochanC. IchiyamaK. YoshimuraA. SteinmanL. ChristakosS. YoussefS. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A.Mol. Cell. Biol.201131173653366910.1128/MCB.05020‑1121746882
    [Google Scholar]
  54. ZeitelhoferM. AdzemovicM.Z. CabreroG.D. BergmanP. HochmeisterS. N’diayeM. PaulsonA. RuhrmannS. AlmgrenM. TegnérJ.N. EkströmT.J. CacaisG.A.O. JagodicM. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis.Proc. Natl. Acad. Sci.20171149E1678E168710.1073/pnas.161578311428196884
    [Google Scholar]
  55. MahlerJ.V. SoltiM. PereiraA.S.L. AdoniT. SilvaG.D. CallegaroD. Vitamin D3 as an add-on treatment for multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials.Mult. Scler. Relat. Disord.20248210543310.1016/j.msard.2024.10543338211504
    [Google Scholar]
  56. ButzkuevenH. PonsonbyA.L. SteinM.S. LucasR.M. MasonD. BroadleyS. KilpatrickT. ScottL.J. BarnettM. CarrollW. MitchellP. HardyT.A. MacdonellR. McCombeP. LeeA. KalincikT. van der WaltA. LynchC. AbernethyD. WilloughbyE. BarkhofF. MacManusD. ClarkeM. AndrewJ. MorahanJ. ZhuC. DearK. TaylorB.V. Vitamin D did not reduce multiple sclerosis disease activity after a clinically isolated syndrome.Brain20232023awad40910.1093/brain/awad40938085047
    [Google Scholar]
  57. CassardS.D. FitzgeraldK.C. QianP. EmrichS.A. AzevedoC.J. GoodmanA.D. SugarE.A. PelletierD. WaubantE. MowryE.M. High-dose vitamin D3 supplementation in relapsing-remitting multiple sclerosis: A randomised clinical trial.EClinicalMedicine20235910195710.1016/j.eclinm.2023.10195737125397
    [Google Scholar]
  58. HandonoK. PratamaM.Z. EndhartiA.T. KalimH. Treatment of low doses curcumin could modulate Th17/Treg balance specifically on CD4+ T cell cultures of systemic lupus erythematosus patients.Cent. Eur. J. Immunol.20154446146910.5114/ceji.2015.5697026862311
    [Google Scholar]
  59. LiuX. LeeY.S. YuC.R. EgwuaguC.E. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases.J. Immunol.200818096070607610.4049/jimmunol.180.9.607018424728
    [Google Scholar]
  60. KimH.Y. ParkE.J. JoeE. JouI. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia.J. Immunol.2003171116072607910.4049/jimmunol.171.11.607214634121
    [Google Scholar]
  61. XieL. LiX.K. FujiF.N. KimuraH. MatsumotoY. IsakaY. TakaharaS. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production.Int. Immunopharmacol.20099557558110.1016/j.intimp.2009.01.02519539560
    [Google Scholar]
  62. BhartiA.C. DonatoN. AggarwalB.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells.J. Immunol.200317173863387110.4049/jimmunol.171.7.386314500688
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230293847240314073359
Loading
/content/journals/aiaamc/10.2174/0118715230293847240314073359
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): calcitriol; curcumin; Multiple sclerosis; Th1; Th17; Treg
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test