Skip to content
2000

Different Supercapacitors’ Characterizations

image of Different Supercapacitors’ Characterizations

The development of new materials and technologies that can efficiently store energy while delivering power quickly has been the subject of numerous investigations. In an electrochemical supercapacitor (E-SC), the electric charge is stored in a doublelayer formed at the electrode/electrolyte interface (EEI), which is based on the surface area as well as pore size availability. The high surface area provided by the micropores (pore diameter: 2 nm) is essential for charging the E-SCs and calculating the capacitance values. Mesopores (2 nm < pore diameter < 50 nm) allow good electrolyte penetration and offer a high-power density (2 nm pore diameter 50 nm). However, because a lot of non-carbonaceous materials are used to make E-SC electrodes, more in-situ analytical characterisation tools along with electrochemical techniques are needed. It is crucial to have at least a brief understanding of the electrochemical processes occurring at the EEI of E-SC electrodes (or devices). Variations in electrochemical, morphological and surface, and crystallographic properties will be used to categorise the data gathered by the state-of-the-art characterisation techniques. This chapter also provides a resource for researchers by outlining the methods to learn more about E-SCs and opportunities to achieve additional functionalities beyond those related to energy storage.

/content/books/9789815223408.chapter-7
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9789815223408
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test