Skip to content
2000

Diversity and Mechanisms of Adaptation of Predominant Bacterial Chemolithotrophs in Extreme Habitats

image of Diversity and Mechanisms of Adaptation of Predominant Bacterial Chemolithotrophs in Extreme Habitats

nbsp;Bacterial chemolithotrophy is one of the most ancient metabolisms and is generally defined as the ability of some microorganisms to utilize a wide range of inorganic substrates as an energy or electron source. While lithotrophy can itself be considered as extremophily, as only some microorganisms (the rock-eaters) have the ability to utilize diverse inorganic chemicals as the sole source of energy, the phylogenetically diverse groups of lithotrophs can thrive in a wide range of extreme habitats. Apart from their excellent eco-physiological adaptability, they also possess versatile enzymatic machinery for maintaining their lithotrophic attributes under such extreme environments. In this chapter, we have highlighted the diversity of iron, hydrogen and sulfur lithotrophic extremophilic bacteria in various extreme habitats, and their role in maintaining the primary productivity, ecosystem stability and mineral cycling / mineralogical transformations. Moreover, genetic determinants and different enzymatic systems which are reported to be involved in such lithotrophic metabolism also have been discussed. We hope this article will shed some new light on the field of extremophile lithotrophy, which will eventually improve our understanding of the extended new boundaries of life. nbsp;

/content/books/9789815080353.chap13
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789815080353
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test