Skip to content
2000

Advances in the Study of Brain Aging and Alzheimer’s Disease Using Microarray and Next-Generation Sequencing: Focus on Selective Neuronal Vulnerability

image of Advances in the Study of Brain Aging and Alzheimer’s Disease Using Microarray and Next-Generation Sequencing: Focus on Selective Neuronal Vulnerability
Preview this chapter:

Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer’s disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Microarray and next-generation sequencing (RNA-Seq) data generated thus far (as of March 2012) using both human brain tissue and brains from animal models of aging and AD were analyzed in this chapter. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.

/content/books/9781608058204.chapter-9
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9781608058204
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test